A184945 Number of connected 4-regular simple graphs on n vertices with girth exactly 5.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 8, 131, 3917, 123859, 4131991, 132160607, 4018022149, 118369811959
Offset: 0
Examples
a(0)=0 because even though the null graph (on zero vertices) is vacuously 4-regular and connected, since it is acyclic, it has infinite girth. The a(19)=1 graph is the unique (4,5) cage: the Robertson graph (see also A159191). It has the following adjacency lists. 01 : 02 03 04 05 02 : 01 06 07 08 03 : 01 09 10 11 04 : 01 12 13 14 05 : 01 15 16 17 06 : 02 09 12 15 07 : 02 10 13 16 08 : 02 11 14 17 09 : 03 06 13 17 10 : 03 07 14 18 11 : 03 08 16 19 12 : 04 06 16 18 13 : 04 07 09 19 14 : 04 08 10 15 15 : 05 06 14 19 16 : 05 07 11 12 17 : 05 08 09 18 18 : 10 12 17 19 19 : 11 13 15 18
Links
- Jan Goedgebeur and Jorik Jooken, Exhaustive generation of edge-girth-regular graphs, arXiv:2401.08271 [math.CO], 2024. See p. 12.
- Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth exactly g
Crossrefs
4-regular simple graphs with girth exactly 5: this sequence (connected), A185045 (disconnected), A185145 (not necessarily connected).
Connected k-regular simple graphs with girth exactly 5: A006925 (k=3), this sequence (k=4), A184955 (k=5).
Comments