A133290 Prime powers of the form (6n+1)^k.
7, 13, 19, 31, 37, 43, 49, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 169, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 343, 349, 361, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601
Offset: 1
Keywords
Examples
A003215(1) = 7 is divisible by 7, A003215(5) = 91 is divisible by 7 and 1+5+1=7, so 7 is a member. A003215(5) = 91 is divisible by 13, A003215(7) = 169 is divisible by 13 and 5+7+1=13 so 13 is a member.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Hex Number.
Programs
-
Maple
N:= 1000: # for terms <= N sort(map(p -> seq(p^i,i=1..floor(log[p](N))), select(isprime, [seq(i,i=1..N,6)]))): # Robert Israel, Dec 02 2019
-
Mathematica
Select[a=6Range@100+1,PrimePowerQ@#&&MemberQ[a,First@@FactorInteger@#]&] (* Giorgos Kalogeropoulos, Mar 31 2021 *)
-
PARI
a133290(uptolimit)={my(a=vector(uptolimit)); for(n=1,oo,my(j=6*n+1);if(j>#a,break);if(isprime(j),for(k=1,oo,my(m=j^k);if(m>#a,break,a[m]++)))); for(k=1,#a,if(a[k],print1(k,", ")))}; a133290(601) \\ Hugo Pfoertner, Dec 03 2019
Comments