A133317 Dimensions of certain Lie algebra (see reference for precise definition).
1, 35, 405, 2695, 12740, 47628, 149940, 413820, 1029105, 2351635, 5010005, 10061415, 19211920, 35119280, 61799760, 105163632, 173707785, 279397755, 438775645, 674334815, 1016206884, 1504211500, 2190324500, 3141625500, 4443791625, 6205210011, 8561787885
Offset: 0
Keywords
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- J. M. Landsberg and L. Manivel, The sextonions and E7 1/2, Adv. Math. 201 (2006), 143-179. [Th. 7.2(i), case a=2]
Programs
-
Maple
b:=binomial; t72a:= proc(a,k) ((2*a+2*k+1)/(2*a+1)) * b(k+3*a/2-1,k)*b(k+3*a/2+1,k)*b(k+2*a,k)/(b(k+a/2-1,k)*b(k+a/2+1,k)); end; [seq(t72a(2,k),k=0..40)];
-
Mathematica
t72a[a_, k_] := (2k+2a+1) / (2a+1) Binomial[k+3/2a-1, k] Binomial[k+3/2a+1, k] Binomial[k+2a,k] / (Binomial[k+a/2-1, k] Binomial[k+a/2+1, k]); Array[t72a[2, #]&, 30, 0] (* Paolo Xausa, Jan 10 2024 *)
Formula
Empirical g.f.: (x+1)*(x^4+24*x^3+76*x^2+24*x+1) / (x-1)^10. - Colin Barker, Jul 27 2013
Comments