A133367 Triangle T(n,k) read by rows given by [2,1,2,1,2,1,2,1,2,1,2,1,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938 .
1, 2, 1, 6, 5, 1, 22, 23, 8, 1, 90, 107, 49, 11, 1, 394, 509, 276, 84, 14, 1, 1806, 2473, 1505, 556, 128, 17, 1, 8558, 12235, 8100, 3429, 974, 181, 20, 1, 41586, 61463, 43393, 20355, 6713, 1557, 243, 23, 1
Offset: 0
Examples
From _Paul Barry_, Apr 28 2009: (Start) Triangle begins 1, 2, 1, 6, 5, 1, 22, 23, 8, 1, 90, 107, 49, 11, 1, 394, 509, 276, 84, 14, 1, 1806, 2473, 1505, 556, 128, 17, 1 Production matrix begins 2, 1, 2, 3, 1, 0, 2, 3, 1, 0, 0, 2, 3, 1, 0, 0, 0, 2, 3, 1, 0, 0, 0, 0, 2, 3, 1, 0, 0, 0, 0, 0, 2, 3, 1; (End)
Links
- Paul Barry, Laurent Biorthogonal Polynomials and Riordan Arrays, arXiv preprint arXiv:1311.2292 [math.CA], 2013.
- P. Peart and L. Woodson, Triple factorization of some Riordan matrices, The Fib. Quart., Vol. 31 No. 2, May 1993.
- Sheng-Liang Yang, Yan-Ni Dong, and Tian-Xiao He, Some matrix identities on colored Motzkin paths, Discrete Mathematics 340.12 (2017): 3081-3091. See p. 3087.
Programs
-
Maple
S := proc (n, k) add(binomial(n-1, k-j)*binomial(n, j)*2^j, j = 0..k); end proc: for n from 0 to 10 do seq(S(n, n-k)-2*S(n, n-k-2), k = 0..n) end do; # Peter Bala, Feb 20 2018
-
Mathematica
T[n_, 0] := Hypergeometric2F1[-n, n + 1, 2, -1]; T[n_, k_] := Binomial[-1 + n, -k + n] Hypergeometric2F1[k - n, -n, k, 2] - 2 Binomial[-1 + n, -2 - k + n] Hypergeometric2F1[2 + k - n, -n, 2 + k, 2]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Peter Luschny, Feb 20 2018 *)
Formula
T(0,0)=1 ; T(n,k)=0 if k<0 or if k>n ; T(n,0) = 2*T(n-1,0)+2*T(n-1,1) ; T(n,k) = T(n-1,k-1)+3*T(n-1,k)+2*T(n-1,k+1) for k>=1 .
G.f.: 1/(1-xy-2x-x^2(2+y)/(1-3x-2x^2/(1-3x-2x^2/(1-3x-2x^2/(1- ... (continued fraction). - Paul Barry, Apr 28 2009
Sum_{k, k>=0} T(m,k)*T(n,k)*2^k = T(m+n,0) = A006318(m+n). - Philippe Deléham, Jan 24 2010
T(n,k) = S(n,n-k) - 2*S(n, n-k-2), where S(n,k) = Sum_{j = 0..k} binomial(n-1,k-j)*binomial(n,j)*2^j. - Peter Bala, Feb 20 2018
Comments