cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133367 Triangle T(n,k) read by rows given by [2,1,2,1,2,1,2,1,2,1,2,1,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938 .

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 22, 23, 8, 1, 90, 107, 49, 11, 1, 394, 509, 276, 84, 14, 1, 1806, 2473, 1505, 556, 128, 17, 1, 8558, 12235, 8100, 3429, 974, 181, 20, 1, 41586, 61463, 43393, 20355, 6713, 1557, 243, 23, 1
Offset: 0

Views

Author

Philippe Deléham, Oct 27 2007

Keywords

Comments

Riordan array ((1-x-sqrt(1-6x+x^2))/(2x), (1-3x-sqrt(1-6x+x^2))/(4x)).
Inverse of Riordan array (1/(1+2x),x/(1+3x+2x^2)) (a signed version of A124237). Paul Barry, Apr 28 2009:
Peart and Woodson give a factorization of this array in the Riordan group as (1/(1 - 3*x), x/(1 - 3*x)) * (C(2*x^2), x*C(2*x^2)) * (1/(1 + x), x), where C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + ... is the o.g.f. of the Catalan numbers A000108. - Peter Bala, Aug 07 2014

Examples

			From _Paul Barry_, Apr 28 2009: (Start)
Triangle begins
  1,
  2, 1,
  6, 5, 1,
  22, 23, 8, 1,
  90, 107, 49, 11, 1,
  394, 509, 276, 84, 14, 1,
  1806, 2473, 1505, 556, 128, 17, 1
Production matrix begins
  2, 1,
  2, 3, 1,
  0, 2, 3, 1,
  0, 0, 2, 3, 1,
  0, 0, 0, 2, 3, 1,
  0, 0, 0, 0, 2, 3, 1,
  0, 0, 0, 0, 0, 2, 3, 1; (End)
		

Crossrefs

Programs

  • Maple
    S := proc (n, k)
      add(binomial(n-1, k-j)*binomial(n, j)*2^j, j = 0..k);
    end proc:
    for n from 0 to 10 do
      seq(S(n, n-k)-2*S(n, n-k-2), k = 0..n)
    end do; # Peter Bala, Feb 20 2018
  • Mathematica
    T[n_, 0] := Hypergeometric2F1[-n, n + 1, 2, -1]; T[n_, k_] := Binomial[-1 + n, -k + n] Hypergeometric2F1[k - n, -n, k, 2] - 2 Binomial[-1 + n, -2 - k + n] Hypergeometric2F1[2 + k - n, -n, 2 + k, 2]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Peter Luschny, Feb 20 2018 *)

Formula

T(0,0)=1 ; T(n,k)=0 if k<0 or if k>n ; T(n,0) = 2*T(n-1,0)+2*T(n-1,1) ; T(n,k) = T(n-1,k-1)+3*T(n-1,k)+2*T(n-1,k+1) for k>=1 .
G.f.: 1/(1-xy-2x-x^2(2+y)/(1-3x-2x^2/(1-3x-2x^2/(1-3x-2x^2/(1- ... (continued fraction). - Paul Barry, Apr 28 2009
Sum_{k, k>=0} T(m,k)*T(n,k)*2^k = T(m+n,0) = A006318(m+n). - Philippe Deléham, Jan 24 2010
T(n,k) = S(n,n-k) - 2*S(n, n-k-2), where S(n,k) = Sum_{j = 0..k} binomial(n-1,k-j)*binomial(n,j)*2^j. - Peter Bala, Feb 20 2018