A133401 Diagonal of polygorial array T(n,k) = n-th polygorial for k = n, for n > 2.
18, 576, 46200, 7484400, 2137544640, 981562982400, 678245967907200, 670873729125600000, 913601739437346960000, 1660189302321994373529600, 3923769742187622047360640000, 11805614186177306251101945600000, 44403795869109177300313209696000000
Offset: 3
Examples
a(3) = polygorial(3,3) = A006472(3) = product of the first 3 triangular numbers = 1*3*6 = 18. a(4) = polygorial(4,4) = A001044(4) = product of the first 4 squares = 1*4*9*16 = 576. a(5) = polygorial(5,5) = A084939(5) = product of the first 5 pentagonal numbers = 1*5*12*22*35 = 46200.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 3..100
- Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003.
Crossrefs
Programs
-
Maple
A133401 := proc(n) return mul((n/2-1)*m^2-(n/2-2)*m,m=1..n): end: seq(A133401(n),n=3..15); # Nathaniel Johnston, May 05 2011
-
Mathematica
Table[Product[m*(4 - n + m*(n-2))/2, {m, 1, n}],{n, 3, 20}] (* Vaclav Kotesovec, Feb 20 2015 *) Table[FullSimplify[(n-2)^n * Gamma[n+1] * Gamma[n+2/(n-2)] / (2^n*Gamma[2/(n-2)])],{n,3,15}] (* Vaclav Kotesovec, Feb 20 2015 *) polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k - 2), n]]; Array[ polygorial[#, #] &, 13, 3] (* Robert G. Wilson v, Dec 13 2016 *)
Formula
a(n) ~ Pi * n^(3*n-1) / (2^(n-2) * exp(2*n+2)). - Vaclav Kotesovec, Feb 20 2015
Extensions
Edited by Nathaniel Johnston, May 05 2011
Comments