cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133443 a(n) = Sum_{k=0..n} C(n,floor(k/2))*(-1)^k*3^(n-k).

Original entry on oeis.org

1, 2, 8, 24, 84, 272, 920, 3040, 10180, 33840, 112968, 376224, 1254696, 4181088, 13939248, 46459584, 154873860, 516229040, 1720795880, 5735921440, 19119861304, 63732624672, 212442552528, 708140901184, 2360471473384, 7868234639072, 26227455730640
Offset: 0

Views

Author

Philippe Deléham, Nov 26 2007, Dec 07 2007

Keywords

Comments

Hankel transform is 4^n. Second binomial transform is A076035.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,Floor[k/2]]*(-1)^k*3^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)

Formula

a(n) = Sum_{k=0..n} A053121(n,k)*A015518(k+1) = (-1)^n*A127362(n). G.f.: (1/sqrt(1-4*x^2))*(1-x*c(x^2))/(1-3*x*c(x^2)), where c(x) is the g.f. of Catalan numbers A000108.
Recurrence: 3*n*a(n) = 2*(5*n-3)*a(n-1) + 4*(3*n-1)*a(n-2) - 40*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2*10^n/3^(n+1). - Vaclav Kotesovec, Oct 20 2012

Extensions

More terms from Vincenzo Librandi, May 25 2013