cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133482 a(p_1^e_1*p_2^e_2*.....*p_m^e_m) = (p_1^p_1)^e_1*(p_2^p^2)^e_2*.....*(p_m^p_m)^e_m where p_1^e_1*p_2^e_2*.....*p_m^e_m is the prime decomposition of n.

Original entry on oeis.org

1, 4, 27, 16, 3125, 108, 823543, 64, 729, 12500, 285311670611, 432, 302875106592253, 3294172, 84375, 256, 827240261886336764177, 2916, 1978419655660313589123979, 50000, 22235661, 1141246682444, 20880467999847912034355032910567, 1728, 9765625, 1211500426369012, 19683, 13176688, 2567686153161211134561828214731016126483469, 337500
Offset: 1

Views

Author

Masahiko Shin, Nov 29 2007

Keywords

Comments

Totally multiplicative sequence with a(p) = p^p for prime p. - Jaroslav Krizek, Oct 17 2009
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^p - 1)) = 1.3850602852044891763... - Amiram Eldar, Dec 08 2020

Examples

			a(6) = a(2^1*3^1) = 2^2^1*3^3^1 = 4*27 = 108.
		

Programs

  • Maple
    A133482 := proc(n) local ifs,f ; if n = 1 then 1; else ifs := ifactors(n)[2] ; mul( (op(1,f)^op(1,f))^op(2,f), f=ifs) ; fi ; end: seq(A133482(n),n=1..30) ; # R. J. Mathar, Nov 30 2007
  • Mathematica
    f[p_, e_] := (p^(p*e)); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 30] (* Amiram Eldar, Dec 08 2020 *)

Formula

Multiplicative with a(p^e) = p^(pe). If n = Product p(k)^e(k) then a(n) = Product p(k)^(p(k)*e(k)). - Jaroslav Krizek, Oct 17 2009

Extensions

Corrected and extended by R. J. Mathar, Nov 30 2007