A133482 a(p_1^e_1*p_2^e_2*.....*p_m^e_m) = (p_1^p_1)^e_1*(p_2^p^2)^e_2*.....*(p_m^p_m)^e_m where p_1^e_1*p_2^e_2*.....*p_m^e_m is the prime decomposition of n.
1, 4, 27, 16, 3125, 108, 823543, 64, 729, 12500, 285311670611, 432, 302875106592253, 3294172, 84375, 256, 827240261886336764177, 2916, 1978419655660313589123979, 50000, 22235661, 1141246682444, 20880467999847912034355032910567, 1728, 9765625, 1211500426369012, 19683, 13176688, 2567686153161211134561828214731016126483469, 337500
Offset: 1
Examples
a(6) = a(2^1*3^1) = 2^2^1*3^3^1 = 4*27 = 108.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..388
Programs
-
Maple
A133482 := proc(n) local ifs,f ; if n = 1 then 1; else ifs := ifactors(n)[2] ; mul( (op(1,f)^op(1,f))^op(2,f), f=ifs) ; fi ; end: seq(A133482(n),n=1..30) ; # R. J. Mathar, Nov 30 2007
-
Mathematica
f[p_, e_] := (p^(p*e)); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 30] (* Amiram Eldar, Dec 08 2020 *)
Formula
Multiplicative with a(p^e) = p^(pe). If n = Product p(k)^e(k) then a(n) = Product p(k)^(p(k)*e(k)). - Jaroslav Krizek, Oct 17 2009
Extensions
Corrected and extended by R. J. Mathar, Nov 30 2007
Comments