A133503 Numbers for which iteration of the powertrain map of A133500 takes a record number of steps to converge.
0, 10, 24, 26, 39, 3573, 26899, 68697, 497699, 3559595, 555959597395
Offset: 1
Examples
The smallest number that takes 13 steps to converge is 497699, for which the trajectory is 497699 -> 11948427342082473984 -> 23554621393597287150649344 -> 2030652382202824185652602470400000 -> 101921587200000000 -> 38281250 -> 1679616 -> 1452729852 -> 1318305830625 -> 70312500 -> 96 -> 531441 -> 500 -> 0. The smallest number that takes 15 steps to converge is 3559595 -> for which the trajectory is 3559595 -> 4634857177734375 -> 23122964691361341376561152 -> 1194842734208247398400000000 -> 23554621393597287150649344 -> 2030652382202824185652602470400000 -> 101921587200000000 -> 38281250 -> 1679616 -> 1452729852 -> 1318305830625 -> 70312500 -> 96 -> 531441 -> 500 -> 0. The number 31395559595973 takes 16 steps to converge and so the next term is >= 16. The trajectory is 31395559595973 -> 471570692025125026702880859375 -> 34755118508614725279865110528 -> 23122964691361341376561152000000 -> 1194842734208247398400000000 -> 23554621393597287150649344 -> 2030652382202824185652602470400000 -> 101921587200000000 -> 38281250 -> 1679616 -> 1452729852 -> 1318305830625 -> 70312500 -> 96 -> 531441 -> 500 -> 0. The smallest number that takes 16 steps to converge is 555959597395, for which the trajectory starts 555959597395 -> 471570692025125026702880859375 and then continues as above. - _Michael S. Branicky_, Jan 24 2022
Crossrefs
Extensions
a(11) from Michael S. Branicky, Jan 24 2022
Comments