cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133519 Smallest k such that p(n)^4 - k is prime where p(n) is the n-th prime.

Original entry on oeis.org

3, 2, 6, 2, 2, 2, 24, 14, 18, 2, 8, 8, 2, 2, 12, 2, 2, 24, 24, 38, 2, 8, 2, 54, 12, 2, 12, 12, 44, 18, 14, 18, 12, 32, 12, 24, 38, 14, 12, 12, 54, 2, 50, 8, 32, 8, 12, 14, 24, 8, 8, 2, 2, 12, 18, 30, 50, 12, 2, 24, 12, 2, 32, 2, 84, 12, 8, 12, 8, 74, 14, 18, 2, 20, 24, 14, 2, 14, 14, 2, 18
Offset: 1

Views

Author

Carl R. White, Sep 14 2007

Keywords

Examples

			p(3)=5, 5^4 = 625; for odd k and n > 1, p(n)^r - k is even and thus not prime, so we only need consider even k.
for k = 2: 625 - 2 = 623, which is 7 * 89 and not prime.
for k = 4: 625 - 4 = 621, which is 3^3 * 23, also not prime.
for k = 6: 625 - 6 = 619, which is prime, so 6 is the smallest number that can be subtracted from 625 to make another prime.
Hence a(3) = 6.
		

Crossrefs

Programs

  • Mathematica
    sk[p_]:=Module[{k=1,c=p^4},While[CompositeQ[c-k],k++];k]; sk/@Prime[Range[100]] (* Harvey P. Dale, Nov 19 2023 *)
    Table[With[{c=p^4},c-NextPrime[c,-1]],{p,Prime[Range[100]]}] (* Harvey P. Dale, Nov 20 2023 *)