cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133557 Numbers k for which the sum of squares of five consecutive primes starting with prime(k) is prime (A133559).

Original entry on oeis.org

2, 3, 9, 10, 11, 16, 18, 25, 26, 28, 31, 33, 36, 42, 43, 46, 47, 54, 56, 58, 63, 68, 76, 87, 91, 93, 99, 101, 105, 106, 114, 127, 131, 145, 153, 159, 183, 186, 196, 201, 206, 229, 230, 232, 233, 238, 239, 241, 244, 245, 246, 248, 253, 256, 257, 264, 265, 266, 268
Offset: 1

Views

Author

Artur Jasinski, Sep 16 2007

Keywords

Comments

For sums of squares of two consecutive primes, only k=1 yields a prime.
For sums of squares of three consecutive primes A133529, it seems that only k=2 yields a prime (checked for all k < 1000000).
Sums of squares of four (and all even numbers of) consecutive primes are even numbers except at k=1.

Examples

			a(1)=2 because prime(2)^2 + prime(3)^2 + prime(4)^2 + prime(5)^2 + prime(6)^2 = 3^2 + 5^2 + 7^2 + 11^2 + 13^2 = 373 is prime.
		

Crossrefs

Programs

  • Mathematica
    b = {}; a = 2; Do[k = Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a; If[PrimeQ[k], AppendTo[b, n]], {n, 1, 100}]; b (* Artur Jasinski *)

Extensions

Name and example corrected by Jonathan Sondow, Nov 04 2015