A133593 "Exact" continued fraction for Pi.
3, 7, 16, -294, 3, -4, 5, -15, -3, 2, 2, 2, 2, 3, -85, -3, 2, 15, 3, 14, -5, -2, -6, -6, -100, 3, 2, 6, 3, 6, -2, -6, -9, 9, -3, -3, -8, 4, -2, -13, 3, -5, 2, 9, -2, -3, 8, -2, -5, -2, -2, -4, 3, 4, 4, 17, -162, -46, 24, -3, -3, 6, -3, -25, 4, -5, 4, -2, -10, -2, -5, -5, 3, 2, 9, -6, -2, -2, -27, 6, -2, -8, -2, -42, -3, 8, 3, 4, -2, -7, -2, -4
Offset: 0
Examples
Pi = 3+1/(7+1/(16+1/(-294+1/(3+1/(-4+1/(5+1/(-15+1/(-3+...)))))))) or Pi = 3+1/(7+1/(16-1/(294-1/(3-1/(4-1/(5-1/(15+1/(3+...)))))))). - _Giovanni Artico_, Oct 23 2013
Links
- Maxim Sølund Kirsebom, Extreme Value Theory for Hurwitz Complex Continued Fractions, Entropy (2021) Vol. 23, No. 7, 840.
Crossrefs
Cf. A001203.
Programs
-
Maple
ECF := proc (n, q::posint)::list; local L, i, z; Digits := 10000; L := [round(n)]; z := n; for i from 2 to q do if z = op(-1, L) then break end if; z := 1/(z-op(-1, L)); L := [op(L), round(z)] end do; return L end proc ECF(Pi,120) # Giovanni Artico, Oct 23 2013
-
Mathematica
$MaxExtraPrecision = Infinity; x[0] = Pi; a[n_] := a[n] = Round[Abs[x[n]]]*Sign[x[n]]; x[n_] := 1/(x[n - 1] - a[n - 1]); Table[a[n], {n, 0, 120}] (* Clark Kimberling, Sep 04 2013 *)
Formula
x(0) = Pi, a(n) = floor(|x(n)| + 0.5) * sign(x(n)), where x(n+1) = 1/(x(n)-a(n)).
Extensions
Edited by Jon E. Schoenfield, Nov 23 2016
Comments