cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A133612 Unique sequence of digits a(0), a(1), a(2), ... such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n satisfies 2^A(k) == A(k) (mod 10^k).

Original entry on oeis.org

6, 3, 7, 8, 4, 9, 2, 3, 4, 3, 5, 3, 5, 7, 0, 5, 1, 6, 8, 9, 0, 8, 3, 3, 3, 5, 8, 9, 5, 1, 0, 0, 6, 2, 7, 8, 6, 9, 6, 8, 2, 5, 5, 4, 1, 0, 7, 5, 4, 2, 6, 8, 2, 6, 1, 4, 8, 2, 8, 2, 1, 2, 1, 2, 1, 9, 0, 7, 2, 9, 8, 3, 5, 5, 8, 9, 8, 9, 7, 1, 0, 4, 9, 0, 5, 2, 2, 0, 9, 1, 7, 8, 8, 8, 6, 5, 2, 2, 4, 4, 8, 3, 7, 1, 0
Offset: 0

Views

Author

Daniel Geisler (daniel(AT)danielgeisler.com), Dec 18 2007

Keywords

Comments

10-adic expansion of the iterated exponential 2^^n (A014221) for sufficiently large n (where c^^n denotes a tower of c's of height n). E.g., for n > 9, 2^^n == 2948736 (mod 10^7).
Sequences A133612-A133619 and A144539-A144544 generalize the observation that 7^343 == 343 (mod 1000).

Examples

			63784923435357051689083335895100627869682554107542682614828212121907298... - _Robert G. Wilson v_, Feb 22 2014
2^36 = 68719476736 == 36 (mod 100), 2^736 == 736 (mod 1000), 2^8736 == 8736 (mod 10000), etc.
		

References

  • M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6
  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

Crossrefs

Programs

  • Mathematica
    (* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[2, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Feb 22 2014 *)

Extensions

Edited by N. J. A. Sloane, Dec 22 2007 and Dec 22 2008
More terms from J. Luis A. Yebra, Dec 12 2008
a(68) onward from Robert G. Wilson v, Feb 22 2014

A373387 Constant congruence speed of the tetration base n (in radix-10), or -1 if n is a multiple of 10.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 2, 1, 1, -1, 1, 1, 1, 1, 4, 1, 1, 2, 1, -1, 1, 1, 1, 2, 3, 2, 1, 1, 1, -1, 1, 2, 1, 1, 2, 1, 1, 1, 1, -1, 1, 1, 2, 1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 3, 1, 3, 1, 1, -1, 1, 1, 1, 1, 6, 1, 1, 3, 1, -1, 1, 1, 1, 2, 2, 2, 1, 1, 1, -1, 1, 2, 1
Offset: 0

Views

Author

Marco Ripà, Jun 02 2024

Keywords

Comments

It has been proved that this sequence contains arbitrarily large entries, while a(0) = a(1) = 0 by definition (given the fact that 0^0 = 1 is a reasonable choice and then 0^^b is 1 if b is even, whereas 0^^b is 0 if b is even). For any nonnegative integer n which is not a multiple of 10, a(n) is given by Equation (16) of the paper "Number of stable digits of any integer tetration" (see Links).
Moreover, a sufficient condition for having a constant congruence speed of any tetration base n, greater than 1 and not a multiple of 10, is that b >= 2 + v(n), where v(n) is equal to
u_5(n - 1) iff n == 1 (mod 5),
u_5(n^2 + 1) iff n == 2,3 (mod 5),
u_5(n + 1) iff n == 4 (mod 5),
u_2(n^2 - 1) - 1 iff n == 5 (mod 10)
(u_5 and u_2 indicate the 5-adic and the 2-adic valuation of the argument, respectively).
Therefore b >= n + 1 is always a sufficient condition for the constancy of the congruence speed (as long as n > 1 and n <> 0 (mod 10)).
As a trivial application of this property, we note that the constant congruence speed of the tetration 3^^b is 1 for any b > 1, while 3^3 is not congruent to 3 modulo 10. Thus, we can easily calculate the exact number of the rightmost digits of Graham’s number, G(64) (see A133613), that are the same of the homologous rightmost digits of 3^3^3^... since 3^3 is not congruent to 3 modulo 10, while the congruence speed of n = 3 is constant from height 2 (see A372490). This means that the last slog_3(G(64))-1 digits of G(64) are the same slog_3(G(64))-1 final digits of 3^3^3^..., whereas the difference between the slog_3(G(64))-th digit of G(64) and the slog_3(G(64))-th digit of 3^3^3^... is congruent to 6 modulo 10.
The constant congruence speed of tetration satisfies the following multiplicative constraint: for each pair (n_1, n_2) of nonnegative integers whose product is not divisible by 10, a(n_1*n_2) is necessarily greater than or equal to the minimum between a(n_1) and a(n_2) (see Equation 2.4 and Appendix of "A Compact Notation for Peculiar Properties Characterizing Integer Tetration" in Links). - Marco Ripà, Apr 26 2025

Examples

			a(3) = 1 since 3^^b := 3^3^3^... freezes 1 more rightmost digit for each unit increment of b, starting from b = 2.
		

References

  • Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6.

Crossrefs

Programs

  • Python
    def v2(n):
        count = 0
        while n % 2 == 0 and n > 0:
            n //= 2
            count += 1
        return count
    def v5(n):
        count = 0
        while n % 5 == 0 and n > 0:
            n //= 5
            count += 1
        return count
    def V(a):
        mod_20 = a % 20
        mod_10 = a % 10
        if mod_20 == 1:
            return min(v2(a - 1), v5(a - 1))
        elif mod_20 == 11:
            return min(v2(a + 1), v5(a - 1))
        elif mod_10 in {2, 8}:
            return v5(a ** 2 + 1)
        elif mod_20 in {3, 7}:
            return min(v2(a + 1), v5(a ** 2 + 1))
        elif mod_20 in {13, 17}:
            return min(v2(a - 1), v5(a ** 2 + 1))
        elif mod_10 == 4:
            return v5(a + 1)
        elif mod_20 == 5:
            return v2(a - 1)
        elif mod_20 == 15:
            return v2(a + 1)
        elif mod_10 == 6:
            return v5(a - 1)
        elif mod_20 == 9:
            return min(v2(a - 1), v5(a + 1))
        elif mod_20 == 19:
            return min(v2(a + 1), v5(a + 1))
    def generate_sequence():
        sequence = []
        for a in range(1026):
            if a == 0 or a == 1:
                sequence.append(0)
            elif a % 10 == 0:
                sequence.append(-1)
            else:
                sequence.append(V(a))
        return sequence
    sequence = generate_sequence()
    print("a(0), a(1), a(2), ..., a(1025) =", ", ".join(map(str, sequence)))

Formula

a(n) = -1 iff n == 0 (mod 10), a(n) = 0 iff n = 1 or 2. Otherwise, a(n) >= 1 and it is given by Equation (16) from Ripà and Onnis.

A133614 Unique sequence of digits a(0), a(1), a(2), ... such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n satisfies 4^A(k) == A(k) (mod 10^k).

Original entry on oeis.org

6, 9, 8, 8, 2, 7, 1, 1, 4, 0, 9, 2, 5, 5, 5, 2, 0, 3, 2, 2, 6, 3, 9, 4, 9, 5, 3, 1, 4, 3, 9, 3, 1, 2, 0, 6, 5, 7, 5, 6, 3, 4, 2, 1, 3, 5, 2, 6, 0, 6, 2, 9, 5, 4, 0, 6, 6, 0, 7, 5, 9, 5, 6, 9, 0, 6, 1, 4, 6, 8, 8, 3, 8, 3, 6, 4, 8, 8, 0, 5, 2, 3, 0, 3, 2, 6, 2, 5, 4, 1, 1, 1, 9, 0, 9, 8, 0, 8, 1, 4, 3, 1, 0, 1, 8
Offset: 0

Views

Author

Daniel Geisler (daniel(AT)danielgeisler.com), Dec 18 2007

Keywords

Comments

10-adic expansion of the iterated exponential 4^^n for sufficiently large n (where c^^n denotes a tower of c's of height n). E.g., for n > 9, 4^^n == 1728896 (mod 10^7).

Examples

			698827114092555203226394953143931206575634213526062954066075956906146883836488...
		

References

  • M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.
  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

Crossrefs

Programs

  • Mathematica
    (* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[4, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)

Extensions

More terms from J. Luis A. Yebra, Dec 12 2008
Edited by N. J. A. Sloane, Dec 22 2008
a(68) onward from Robert G. Wilson v, Mar 06 2014

A133615 Unique sequence of digits a(0), a(1), a(2), ... such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n satisfies 5^A(k) == A(k) (mod 10^k).

Original entry on oeis.org

5, 2, 1, 3, 0, 2, 8, 0, 4, 8, 1, 6, 2, 5, 1, 3, 9, 4, 7, 1, 1, 7, 8, 5, 3, 8, 0, 9, 5, 1, 1, 5, 6, 9, 8, 0, 4, 9, 2, 2, 9, 8, 9, 3, 3, 9, 8, 1, 3, 3, 1, 7, 7, 4, 6, 7, 1, 0, 2, 8, 3, 7, 5, 1, 7, 3, 1, 4, 1, 1, 9, 7, 8, 2, 9, 6, 2, 5, 5, 5, 3, 3, 0, 9, 0, 4, 7, 3, 1, 8, 5, 7, 4, 6, 9, 7, 2, 3, 0, 8, 9, 2, 6, 1, 4
Offset: 0

Views

Author

Daniel Geisler (daniel(AT)danielgeisler.com), Dec 18 2007

Keywords

Comments

10-adic expansion of the iterated exponential 5^^n for sufficiently large n (where c^^n denotes a tower of c's of height n). E.g., for n > 9, 5^^n == 8203125 (mod 10^7).

Examples

			521302804816251394711785380951156980492298933981331774671028375173141197829625...
		

References

  • M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.
  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

Crossrefs

Programs

  • Mathematica
    (* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[5, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)

Extensions

More terms from J. Luis A. Yebra, Dec 12 2008
Edited by N. J. A. Sloane, Dec 22 2008
a(68) onward from Robert G. Wilson v, Mar 06 2014

A133617 Unique sequence of digits a(0), a(1), a(2), ... such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n satisfies 7^A(k) == A(k) (mod 10^k).

Original entry on oeis.org

3, 4, 3, 2, 7, 1, 5, 6, 5, 1, 1, 5, 5, 6, 2, 1, 3, 3, 3, 4, 6, 3, 5, 8, 3, 3, 3, 7, 3, 6, 0, 8, 6, 0, 3, 6, 9, 5, 6, 7, 4, 1, 8, 2, 6, 6, 5, 9, 2, 6, 5, 3, 0, 8, 6, 5, 2, 8, 4, 4, 4, 7, 7, 7, 6, 7, 5, 4, 9, 1, 2, 9, 8, 6, 5, 7, 7, 0, 7, 8, 4, 2, 6, 3, 8, 5, 4, 8, 1, 9, 4, 5, 8, 3, 9, 9, 5, 4, 4, 0, 3, 8, 2, 2, 0
Offset: 0

Views

Author

Daniel Geisler (daniel(AT)danielgeisler.com), Dec 18 2007

Keywords

Comments

10-adic expansion of the iterated exponential 7^^n for sufficiently large n (where c^^n denotes a tower of c's of height n). E.g., for n > 9, 7^^n == 5172343 (mod 10^7).

Examples

			343271565115562133346358333736086036956741826659265308652844477767549129865770...
Sequences A133612-A144544 generalize the observation that 7^343 == 343 (mod 1000).
		

References

  • M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.
  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

Crossrefs

Programs

  • Mathematica
    (* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[7, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)

Extensions

More terms from J. Luis A. Yebra, Dec 12 2008
Edited by N. J. A. Sloane, Dec 22 2008
a(68) onward from Robert G. Wilson v, Mar 06 2014

A133618 Unique sequence of digits a(0), a(1), a(2), ... such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n satisfies 8^A(k) == A(k) (mod 10^k).

Original entry on oeis.org

6, 5, 8, 5, 2, 2, 5, 9, 8, 6, 1, 4, 5, 3, 0, 7, 7, 5, 1, 2, 5, 1, 8, 0, 0, 1, 5, 8, 8, 5, 5, 9, 0, 2, 6, 1, 3, 9, 1, 1, 5, 6, 2, 9, 8, 3, 7, 7, 2, 0, 1, 5, 7, 3, 8, 8, 2, 6, 6, 7, 0, 3, 7, 5, 7, 2, 7, 4, 2, 4, 4, 2, 4, 3, 7, 5, 8, 4, 4, 2, 2, 1, 3, 0, 8, 8, 8, 8, 7, 1, 5, 9, 1, 2, 0, 1, 6, 0, 9, 8, 0, 5, 3, 3, 1
Offset: 0

Views

Author

Daniel Geisler (daniel(AT)danielgeisler.com), Dec 18 2007

Keywords

Comments

10-adic expansion of the iterated exponential 8^^n for sufficiently large n (where c^^n denotes a tower of c's of height n). E.g., for n > 9, 8^^n == 5225856 (mod 10^7).

Examples

			658522598614530775125180015885590261391156298377201573882667037572742442437584...
8^56 == 56 (mod 100), 8^856 == 856 (mod 1000), ...
		

References

  • M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.
  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

Crossrefs

Programs

  • Mathematica
    (* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[8, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)

Extensions

More terms from J. Luis A. Yebra, Dec 12 2008
Edited by N. J. A. Sloane, Dec 22 2008
a(68) onward from Robert G. Wilson v, Mar 06 2014

A133619 Unique sequence of digits a(0), a(1), a(2), ... such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n satisfies 9^A(k) == A(k) (mod 10^k).

Original entry on oeis.org

9, 8, 2, 5, 4, 7, 2, 9, 3, 7, 9, 5, 7, 8, 0, 8, 4, 7, 0, 1, 6, 5, 7, 4, 3, 0, 5, 6, 2, 7, 2, 8, 4, 5, 2, 5, 7, 0, 0, 5, 8, 9, 9, 8, 8, 7, 4, 0, 4, 1, 9, 4, 9, 8, 8, 6, 8, 4, 6, 8, 1, 9, 9, 2, 6, 2, 0, 1, 3, 7, 5, 4, 1, 6, 1, 3, 6, 0, 7, 3, 8, 5, 8, 4, 6, 0, 0, 2, 0, 6, 3, 2, 5, 3, 7, 6, 7, 2, 9, 5, 7, 4, 3, 2, 4
Offset: 0

Views

Author

Daniel Geisler (daniel(AT)danielgeisler.com), Dec 18 2007

Keywords

Comments

10-adic expansion of the iterated exponential 9^^n for sufficiently large n (where c^^n denotes a tower of c's of height n). E.g., for n > 9, 9^^n == 2745289 (mod 10^7).

Examples

			982547293795780847016574305627284525700589988740419498868468199262013754161360...
		

References

  • M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.
  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

Crossrefs

Programs

  • Mathematica
    (* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[9, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)

Extensions

More terms from J. Luis A. Yebra, Dec 12 2008
Edited by N. J. A. Sloane, Dec 22 2008
a(68) onward from Robert G. Wilson v, Mar 06 2014

A133616 Unique sequence of digits a(0), a(1), a(2), ... such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1} a(n)*10^n satisfies 6^A(k) == A(k) (mod 10^k).

Original entry on oeis.org

6, 5, 6, 8, 3, 2, 7, 4, 4, 7, 2, 2, 3, 9, 5, 5, 6, 9, 7, 6, 7, 3, 2, 1, 9, 6, 0, 1, 7, 5, 0, 6, 0, 5, 8, 6, 9, 1, 8, 0, 1, 3, 7, 9, 4, 6, 0, 4, 4, 7, 0, 4, 6, 4, 0, 2, 4, 6, 3, 7, 8, 1, 6, 7, 0, 8, 5, 0, 1, 4, 3, 4, 4, 4, 1, 8, 5, 7, 5, 9, 7, 0, 0, 4, 2, 9, 6, 3, 4, 1, 8, 9, 6, 0, 9, 8, 4, 5, 7, 0, 3, 5, 0, 8, 6
Offset: 0

Views

Author

Daniel Geisler (daniel(AT)danielgeisler.com), Dec 18 2007

Keywords

Comments

10-adic expansion of the iterated exponential 6^^n for sufficiently large n (where c^^n denotes a tower of c's of height n). E.g., for n > 9, 6^^n == 7238656 (mod 10^7).

Examples

			656832744722395569767321960175060586918013794604470464024637816708501434441857...
		

References

  • M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.
  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

Crossrefs

Programs

  • Mathematica
    (* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[6, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)

Extensions

More terms from J. Luis A. Yebra, Dec 12 2008
Edited by N. J. A. Sloane, Dec 22 2008
a(68) onward from Robert G. Wilson v, Mar 06 2014

A144539 Unique sequence of digits a(0), a(1), a(2), .. such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n satisfies 11^A(k) == A(k) mod 10^k.

Original entry on oeis.org

1, 1, 6, 6, 6, 6, 2, 7, 1, 9, 7, 8, 3, 0, 7, 6, 6, 2, 0, 2, 7, 1, 9, 8, 7, 9, 3, 4, 3, 2, 6, 9, 8, 1, 1, 7, 5, 1, 0, 2, 0, 4, 5, 9, 4, 3, 9, 9, 9, 4, 5, 3, 9, 3, 9, 2, 4, 3, 8, 4, 1, 6, 0, 5, 6, 8, 8, 0, 6, 4, 2, 9, 2, 6, 1, 6, 6, 4, 0, 9, 0, 3, 9, 4, 9, 6, 8, 9, 0, 8, 6, 9, 1, 8, 7, 5, 0, 5, 8, 6, 7, 4, 6, 5, 3
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 2008

Keywords

Examples

			116666271978307662027198793432698117510204594399945393924384160568806429261664...
		

References

  • M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.
  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

Crossrefs

Programs

  • Mathematica
    (* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[11, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)

Extensions

a(68) onward from Robert G. Wilson v, Mar 06 2014

A144540 Unique sequence of digits a(0), a(1), a(2), .. such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n satisfies 12^A(k) == A(k) mod 10^k.

Original entry on oeis.org

6, 1, 4, 2, 1, 0, 4, 5, 4, 1, 2, 4, 4, 1, 7, 1, 3, 9, 4, 8, 5, 8, 4, 8, 5, 3, 1, 9, 5, 3, 6, 9, 3, 2, 5, 7, 1, 9, 7, 7, 7, 8, 2, 3, 3, 9, 4, 2, 1, 0, 4, 8, 5, 7, 9, 6, 7, 9, 5, 6, 2, 5, 3, 5, 7, 6, 7, 5, 4, 1, 5, 0, 8, 2, 9, 0, 3, 6, 4, 1, 0, 7, 9, 6, 2, 8, 3, 8, 0, 3, 4, 4, 1, 4, 6, 4, 3, 9, 0, 4, 2, 3, 0, 5, 9
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 2008

Keywords

Examples

			614210454124417139485848531953693257197778233942104857967956253576754150829036...
		

References

  • M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.
  • Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.

Crossrefs

Programs

  • Mathematica
    (* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[12, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)

Extensions

a(68) onward from Robert G. Wilson v, Mar 06 2014
Showing 1-10 of 17 results. Next