A379906 Smallest integer greater than 1 and not ending in 0 whose congruence speed is not constant at height n (see A373387).
2, 2, 5, 307, 807, 72943, 795807, 1295807, 16295807, 166295807, 16666295807, 31666295807, 81666295807, 8581666295807, 26581907922943, 503581666295807, 2003581666295807, 90476581907922943, 140476581907922943, 6847003581666295807, 61847003581666295807, 911847003581666295807
Offset: 1
Examples
a(5) = 807 since the congruence speed of 807 is 0 at height 1, 4 at heights 2, 3, 4, and 5, finally matching the value of the constant congruence speed of 807 at height 6 (and it is the smallest integer whose congruence speed stabilizes at height 6 or above).
References
- Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6.
Links
- Marco Ripà, On the constant congruence speed of tetration, Notes on Number Theory and Discrete Mathematics, Volume 26, 2020, Number 3, Pages 245—260.
- Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43—61.
- Marco Ripà, Twelve Python Programs to Help Readers Test Peculiar Properties of Integer Tetration, ResearchGate, 2024.
- Marco Ripà and Luca Onnis, Number of stable digits of any integer tetration, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441—457.
- Wikipedia, Tetration.
Crossrefs
Formula
As long as ceiling(log_10(a(n))) < n, for any n > 3, the least significant floor(log_10(a(n))) digits of a(n) (from right to left) are given by the first floor(log_10(a(n))) entries of A290372(n), or A290373(n), or A290374(n), or A290375(n) (i.e., all but the first digit of each a(n) are described by ({5^2^k}_oo + {2^5^k}_oo) := ...17196359523418092077057, ({5^2^k}_oo - {2^5^k}_oo) := ...37588152996418333704193, (- {5^2^k}_oo + {2^5^k}_oo) := ...2411847003581666295807, and (- {5^2^k}_oo - {2^5^k}_oo) := ...2803640476581907922943).
Comments