A377124 Phase shift (original name "sfasamento") of the tetration base 10*n at any height greater than or equal to 3.
1, 6, 1, 6, 5, 6, 1, 6, 1, 1, 1, 6, 1, 6, 5, 6, 1, 6, 1, 6, 1, 6, 1, 6, 5, 6, 1, 6, 1, 1, 1, 6, 1, 6, 5, 6, 1, 6, 1, 6, 1, 6, 1, 6, 5, 6, 1, 6, 1, 5, 1, 6, 1, 6, 5, 6, 1, 6, 1, 6, 1, 6, 1, 6, 5, 6, 1, 6, 1, 1, 1, 6, 1, 6, 5, 6, 1, 6, 1, 6, 1, 6, 1, 6, 5, 6, 1
Offset: 1
Examples
a(1) = 1 since 10^(10^10) == 0 (mod 10^10000000000) and 10^(10^10) == 1 (mod 10^10000000001), and trivially 1 - 0 = 1.
References
- Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6.
Links
- Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43—61.
- Marco Ripà, Congruence speed of tetration bases ending with 0, arXiv:2402.07929 [math.NT], 2024.
- Marco Ripà, Graham's number stable digits: an exact solution, arXiv:2411.00015 [math.GM], 2024.
- Marco Ripà, Twelve Python Programs to Help Readers Test Peculiar Properties of Integer Tetration, ResearchGate, 2024. See pp. 18, 19, 20, 27.
- Wikipedia, Graham's Number.
- Wikipedia, Tetration.
Formula
a(n) equals the least significant nonzero digit of n^((n*10)^(n*10)).
Let h indicate the least significant nonzero digit of n. Then,
a(n) = 1 iff h = 1,3,7,9;
a(n) = 5 iff h = 5;
a(n) = 6 iff h = 2,4,6,8.
Comments