cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133657 Expansion of q * (phi(q) * psi(q^4))^2 in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 4, 4, 0, 6, 16, 8, 0, 13, 24, 12, 0, 14, 32, 24, 0, 18, 52, 20, 0, 32, 48, 24, 0, 31, 56, 40, 0, 30, 96, 32, 0, 48, 72, 48, 0, 38, 80, 56, 0, 42, 128, 44, 0, 78, 96, 48, 0, 57, 124, 72, 0, 54, 160, 72, 0, 80, 120, 60, 0, 62, 128, 104, 0, 84, 192, 68, 0, 96
Offset: 1

Views

Author

Michael Somos, Sep 20 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 4*q^2 + 4*q^3 + 6*q^5 + 16*q^6 + 8*q^7 + 13*q^9 + 24*q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q^2]/2)^2, {q, 0, n}]; (* Michael Somos, Oct 30 2015 *)
    a[n_] := Switch[IntegerExponent[n, 2], 0, DivisorSigma[1, n], 1, 4*DivisorSigma[1, n/2], , 0]; Array[a, 100] (* _Amiram Eldar, Nov 12 2022 *)
  • PARI
    {a(n) = if( n<1, 0, if( n%2, sigma(n), if( n%4, 4 * sigma(n/2), 0)))};
    
  • PARI
    {a(n) = my(A); if ( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 * eta(x^8 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^3) )^2, n))};

Formula

Expansion of (eta(q^2)^5 * eta(q^8)^2 / (eta(q)^2 * eta(q^4)^3))^2 in powers of q.
Euler transform of period 8 sequence [ 4, -6, 4, 0, 4, -6, 4, -4, ...].
a(n) is multiplicative with a(2) = 4, a(2^e) = 0 if e>1, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A133690.
a(4*n) = 0. a(4*n+2) = 4 * sigma(2*n+1). a(2*n+1) = sigma(2*n+1).
a(n) = -(-1)^n * A121455(n). Convolution square of A113411.
a(2*n + 1) = A008438. a(4*n + 1) = A112610(n). a(4*n + 3) = 4 * A097723(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/16 = 0.6168502... (A222068). - Amiram Eldar, Nov 12 2022