A133676 Negative discriminants with form class group of exponent 4 (negated).
39, 55, 56, 63, 68, 80, 128, 136, 144, 155, 156, 171, 184, 196, 203, 208, 219, 220, 224, 252, 256, 259, 260, 264, 275, 276, 291, 292, 308, 320, 323, 328, 336, 355, 360, 363, 384, 387, 388, 400, 456, 468, 475, 504, 507, 528, 544, 552, 564, 568, 576, 580, 592
Offset: 1
Links
- David Brink, Table of n, a(n) for n = 1..485
- David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms (Video abstract)
- David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms, J. Number Theory 129 (2009), no. 2, 464-468.
- A. G. Earnest and D. R. Estes, An algebraic approach to the growth of class numbers of binary quadratic lattices, Mathematika 28 (1981), no. 2, 160--168.
- Journal of Number Theory, Video Abstracts
Programs
-
PARI
a(n) = if(n%4==0 || n%4==3, my(v = quadclassunit(-n)[2]); (#v > 0) && (v[1] == 4), 0) \\ Jianing Song, Sep 24 2022
Comments