cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A133692 Expansion of phi(-q) * phi(q^2) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 2, -4, 2, 0, 4, 0, 2, -6, 0, -4, 4, 0, 0, 0, 2, -4, 6, -4, 0, 0, 4, 0, 4, -2, 0, -8, 0, 0, 0, 0, 2, -8, 4, 0, 6, 0, 4, 0, 0, -4, 0, -4, 4, 0, 0, 0, 4, -2, 2, -8, 0, 0, 8, 0, 0, -8, 0, -4, 0, 0, 0, 0, 2, 0, 8, -4, 4, 0, 0, 0, 6, -4, 0, -4, 4, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Sep 20 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is nonzero if and only if n is in A002479.

Examples

			G.f. = 1 - 2*q + 2*q^2 - 4*q^3 + 2*q^4 + 4*q^6 + 2*q^8 - 6*q^9 - 4*q^11 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(16), 1), 80); A[1] -2*A[2] +2*A[3] - 4*A[4] + 2*A[5] + 4*A[7]; /* Michael Somos, Aug 29 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n 2 DivisorSum[ n, KroneckerSymbol[ -2, #] &]]; (* Michael Somos, Oct 30 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^2], {q, 0, n}]; (* Michael Somos, Aug 29 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, (-1)^n * 2 * sumdiv(n, d, kronecker( -2, d)))};
    
  • PARI
    {a(n) = my(A); if ( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^5 / (eta(x^2 + A)^3 * eta(x^8 + A)^2), n))};
    

Formula

Expansion of eta(q)^2 * eta(q^4)^5 / (eta(q^2)^3 * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ -2, 1, -2, -4, -2, 1, -2, -2, ...].
Moebius transform is period 16 sequence [ -2, 4, -2, 0, 2, 4, 2, 0, -2, -4, -2, 0, 2, -4, 2, 0, ...].
a(n) = -2 * b(n) where b(n) is multiplicative with b(2^e) = -1 if e>0, b(p^e) = (1 + (-1)^e) / 2 if p == 5, 7 (mod 8), b(p^e) = e + 1 if p == 1, 3 (mod 8).
G.f.: Product_{k>0} (1 - x^k)^2 * (1 + x^(2*k))^3 / (1 + x^(4*k))^2.
a(8*n + 5) = a(8*n + 7) = 0.
A133690 is the convolution square. a(n) = (-1)^n * A033715(n). a(2*n) = A033715(n). a(2*n + 1) = -2 * A113411(n).

A133657 Expansion of q * (phi(q) * psi(q^4))^2 in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 4, 4, 0, 6, 16, 8, 0, 13, 24, 12, 0, 14, 32, 24, 0, 18, 52, 20, 0, 32, 48, 24, 0, 31, 56, 40, 0, 30, 96, 32, 0, 48, 72, 48, 0, 38, 80, 56, 0, 42, 128, 44, 0, 78, 96, 48, 0, 57, 124, 72, 0, 54, 160, 72, 0, 80, 120, 60, 0, 62, 128, 104, 0, 84, 192, 68, 0, 96
Offset: 1

Views

Author

Michael Somos, Sep 20 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 4*q^2 + 4*q^3 + 6*q^5 + 16*q^6 + 8*q^7 + 13*q^9 + 24*q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q^2]/2)^2, {q, 0, n}]; (* Michael Somos, Oct 30 2015 *)
    a[n_] := Switch[IntegerExponent[n, 2], 0, DivisorSigma[1, n], 1, 4*DivisorSigma[1, n/2], , 0]; Array[a, 100] (* _Amiram Eldar, Nov 12 2022 *)
  • PARI
    {a(n) = if( n<1, 0, if( n%2, sigma(n), if( n%4, 4 * sigma(n/2), 0)))};
    
  • PARI
    {a(n) = my(A); if ( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 * eta(x^8 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^3) )^2, n))};

Formula

Expansion of (eta(q^2)^5 * eta(q^8)^2 / (eta(q)^2 * eta(q^4)^3))^2 in powers of q.
Euler transform of period 8 sequence [ 4, -6, 4, 0, 4, -6, 4, -4, ...].
a(n) is multiplicative with a(2) = 4, a(2^e) = 0 if e>1, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A133690.
a(4*n) = 0. a(4*n+2) = 4 * sigma(2*n+1). a(2*n+1) = sigma(2*n+1).
a(n) = -(-1)^n * A121455(n). Convolution square of A113411.
a(2*n + 1) = A008438. a(4*n + 1) = A112610(n). a(4*n + 3) = 4 * A097723(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/16 = 0.6168502... (A222068). - Amiram Eldar, Nov 12 2022

A133691 Expansion of (1 - (phi(-q) * phi(q^2))^2) / 4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 4, -6, 6, -8, 8, -6, 13, -12, 12, -24, 14, -16, 24, -6, 18, -26, 20, -36, 32, -24, 24, -24, 31, -28, 40, -48, 30, -48, 32, -6, 48, -36, 48, -78, 38, -40, 56, -36, 42, -64, 44, -72, 78, -48, 48, -24, 57, -62, 72, -84, 54, -80, 72, -48, 80, -60, 60, -144
Offset: 1

Views

Author

Michael Somos, Sep 20 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 2*q^2 + 4*q^3 - 6*q^4 + 6*q^5 - 8*q^6 + 8*q^7 - 6*q^8 + 13*q^9 - ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := Which[ n < 1, 0, OddQ[n], DivisorSigma[ 1, n], True, -2 DivisorSum[ n/2, # Boole[Mod[#, 4] > 0] &]]; (* Michael Somos, Oct 30 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - (EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^2])^2) / 4, {q, 0, n}]; (* Michael Somos, Oct 30 2015 *)
  • PARI
    {a(n) = if( n<1, 0, n%2, sigma(n), -2 * sumdiv(n/2, d, if(d%4, d)))};

Formula

Expansion of (1 - (eta(q)^2 * eta(q^4)^5 / (eta(q^2)^3 * eta(q^8)^2))^2) / 4 in powers of q.
a(n) is multiplicative with a(2) = -2, a(2^e) = -6 if e>1, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>2.
a(n) = -4 * A133690(n) = -(-1)^n * A111973(n). a(2*n) = -2 * A046897(n). a(2*n + 1) = A008438(n). a(4*n) = -6 * A000593(n). a(4*n + 1) = A112610(n). a(4*n + 3) = 4 * A097723(n).
Dirichlet g.f.: zeta(s) * zeta(s-1) * (1 - 5/2^s + 1/2^(2*s-1) + 1/2^(3*s-3)). - Amiram Eldar, Oct 28 2023
Showing 1-3 of 3 results.