cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133721 Triangle read by rows: T(m,n) = number of n-balanced and minimal labeled covers of a finite set of m unlabeled elements (m >= 1, 1 <= n <= m).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 7, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 10, 1, 13, 1, 1, 1, 1, 1, 1, 1, 25, 7, 1, 1, 1, 1, 1, 1, 1, 15, 6, 3, 22, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 21, 65, 81, 7, 34, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10
Offset: 1

Views

Author

N. J. A. Sloane, Dec 30 2007

Keywords

Examples

			Triangle begins:
1
1 1
1 1 1
1 1 1 1
1 3 1 1 1
1 1 1 1 1 1
1 6 7 1 1 1 1
1 1 3 1 1 1 1 1
1 10 1 13 1 1 1 1 1
1 1 25 7 1 1 1 1 1 1
1 15 6 3 22 1 1 1 1 1 1
		

Crossrefs

Cf. A133709. Column n=2 is essentially A000217. Columns 3, 4, 5, 6 give A133722, A133723, A133724, A133733.

Programs

  • Maple
    A133721 := proc(m,n)
            l := ceil(m/n) ;
            c := n*ceil(m/n)-m ;
            A133713(l,c) ;
    end proc: # R. J. Mathar, Nov 23 2011
  • Mathematica
    A133713[l_, cl_] := Module[{g, k, s}, g = 1; For[k = 1, k <= cl+1, k++, s = Sum[Binomial[Binomial[l, k+1] + i-1, i]*t^(i*k), {i, 0, Ceiling[cl/k]}]; g = g*s]; g = Expand[g]; SeriesCoefficient[g, {t, 0, cl}]]; A133713[, 0] = 1; a[m, n_] := A133713[Ceiling[m/n], n*Ceiling[m/n] - m]; Table[a[m, n], {m, 1, 14}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jan 20 2014, after R. J. Mathar *)