cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133725 a(n) = Sum_{d|n} mu(n/d)*d*(3*d - 1)/2.

Original entry on oeis.org

1, 4, 11, 17, 34, 35, 69, 70, 105, 106, 175, 142, 246, 213, 284, 284, 424, 321, 531, 428, 570, 535, 781, 572, 890, 750, 963, 858, 1246, 860, 1425, 1144, 1430, 1288, 1716, 1290, 2034, 1611, 2004, 1720, 2500, 1722, 2751, 2150, 2580, 2365, 3289, 2296, 3507, 2690
Offset: 1

Views

Author

Gary W. Adamson, Sep 21 2007

Keywords

Comments

Previous name was: A054525 * A000326.
Möbius transform of the pentagonal numbers.

Examples

			a(4) = 17 = (0, -1, 0, 1) dot (1, 5, 12, 22) = (0, -5, 0, 22).
		

Crossrefs

Programs

  • Maple
    read("transforms") : A000326 := proc(n) n*(3*n-1)/2 ; end: a000326 := [seq(A000326(n),n=1..300)] ; a133725 := MOBIUS(a000326) ; for i from 1 to nops(a133725) do printf("%d,",op(i,a133725)) ; od: # R. J. Mathar, Jan 19 2009
  • Mathematica
    a[n_] := DivisorSum[n, #*(3*#-1) * MoebiusMu[n/#] &] / 2; Array[a, 50] (* Amiram Eldar, May 29 2025 *)
  • PARI
    a(n) = sumdiv(n, d, d*(3*d-1) * moebius(n/d)) / 2; \\ Amiram Eldar, May 29 2025

Formula

G.f.: Sum_{k>=1} mu(k) * x^k * (1 + 2*x^k) / (1 - x^k)^3. - Ilya Gutkovskiy, Sep 17 2021
a(n) = (3*A007434(n) - A000010(n))/2. - Amiram Eldar, Jun 04 2025

Extensions

More terms from R. J. Mathar, Jan 19 2009
New name from Ilya Gutkovskiy, Sep 17 2021