cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133757 Total number of restricted right truncatable primes in base n.

Original entry on oeis.org

0, 1, 2, 4, 11, 7, 20, 23, 27, 28, 61, 61, 153, 130, 151, 157, 301, 343, 561, 806, 1046, 615, 1227, 2136, 2472, 2288, 3685, 2110, 5241, 4798, 7017, 10630, 14175, 14127, 21267, 15034, 24677, 29289, 46814, 29291, 63872, 58451, 82839, 143678, 196033, 99103, 218108
Offset: 2

Views

Author

Martin Renner, Jan 04 2008

Keywords

Comments

Prime digits p in base n are counted if there is no prime with 2 digits which can have its rightmost digit removed to produce p.

Crossrefs

Cf. A076586.

Programs

  • Python
    from sympy import isprime, primerange
    def fromdigits(digs, base):
        return sum(d*base**i for i, d in enumerate(digs))
    def a(n):
        prime_lists, an = [(p, ) for p in primerange(1, n)], 0
        digits = 1
        while len(prime_lists) > 0:
            new_prime_strs = set()
            for p in prime_lists:
                can_extend = False
                for d in range(n):
                    c = (d, ) + p
                    if isprime(fromdigits(c, n)):
                        can_extend = True
                        new_prime_strs.add(c)
                if not can_extend:
                    an += 1
            prime_lists = list(new_prime_strs)
            digits += 1
        return an
    print([a(n) for n in range(2, 27)]) # Michael S. Branicky, Dec 11 2022

Extensions

a(6) corrected and a(11) and beyond from Michael S. Branicky, Dec 11 2022