A133757 Total number of restricted right truncatable primes in base n.
0, 1, 2, 4, 11, 7, 20, 23, 27, 28, 61, 61, 153, 130, 151, 157, 301, 343, 561, 806, 1046, 615, 1227, 2136, 2472, 2288, 3685, 2110, 5241, 4798, 7017, 10630, 14175, 14127, 21267, 15034, 24677, 29289, 46814, 29291, 63872, 58451, 82839, 143678, 196033, 99103, 218108
Offset: 2
Keywords
Links
- I. O. Angell and H. J. Godwin, On Truncatable Primes, Math. Comput. 31, 265-267, 1977.
- Eric Weisstein's World of Mathematics, Truncatable Prime.
- Index entries for sequences related to truncatable primes
Crossrefs
Cf. A076586.
Programs
-
Python
from sympy import isprime, primerange def fromdigits(digs, base): return sum(d*base**i for i, d in enumerate(digs)) def a(n): prime_lists, an = [(p, ) for p in primerange(1, n)], 0 digits = 1 while len(prime_lists) > 0: new_prime_strs = set() for p in prime_lists: can_extend = False for d in range(n): c = (d, ) + p if isprime(fromdigits(c, n)): can_extend = True new_prime_strs.add(c) if not can_extend: an += 1 prime_lists = list(new_prime_strs) digits += 1 return an print([a(n) for n in range(2, 27)]) # Michael S. Branicky, Dec 11 2022
Extensions
a(6) corrected and a(11) and beyond from Michael S. Branicky, Dec 11 2022
Comments