A133827 Number of solutions to x + 7 * y = 2 * n in triangular numbers.
1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 2, 1, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 2, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0
Offset: 0
Examples
G.f. = 1 + x^3 + x^4 + 2*x^5 + 2*x^11 + x^12 + 2*x^14 + 2*x^18 + 2*x^21 + x^24 + ... G.f. = q + q^7 + q^9 + 2*q^11 + 2*q^23 + q^25 + 2*q^29 + 2*q^37 + 2*q^43 + q^49 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Alexander Berkovich and Hamza Yesilyurt, New Identities For 7-cores with Prescribed BG-Rank, arXiv:math/0603150 [math.NT], 2006-2007, page 3, equation (1.19).
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Crossrefs
Programs
-
Mathematica
a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, Mod[#, 2] KroneckerSymbol[ -28, #] &]]; (* Michael Somos, Oct 30 2015 *) a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^(7/2)], {x, 0, 2 n + 1}]; (* Michael Somos, Oct 30 2015 *)
-
PARI
{a(n) = if( n<0, 0, n = 2*n + 1; sumdiv(n, d, (d%2) * kronecker( -28, d)))};
-
PARI
{a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod(k = 1, matsize(A)[1], [p, e] = A[k, ]; if(p == 2, 0, p == 7, 1, 1 == kronecker( -7, p), e + 1, 1-e%2)))};
Formula
Expansion of psi(x^4) * phi(x^14) + x^3 * psi(x^28) * phi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(7^e) = 1, b(p^e) = (1 + (-1)^e) / 2 if p == 3, 5, 6 (mod 7), b(p^e) = e + 1 if p == 1, 2, 4 (mod 7).
a(7*n + 1) = a(7*n + 2) = a(7*n + 6) = 0. a(7*n + 3) = a(n).
Expansion of psi(q) * psi(q^7) - q * psi(q^2) * psi(q^14) = (psi(q) * psi(q^7) + psi(-q) * psi(-q^7)) / 2 in powers of q^2 where psi() is a Ramanujan theta function.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(7)) = 0.593705... . - Amiram Eldar, Dec 29 2023
Comments