A133885 Binomial(n+5,n) mod 5^2.
1, 6, 21, 6, 1, 2, 12, 17, 12, 2, 3, 18, 13, 18, 3, 4, 24, 9, 24, 4, 5, 5, 5, 5, 5, 6, 11, 1, 11, 6, 7, 17, 22, 17, 7, 8, 23, 18, 23, 8, 9, 4, 14, 4, 9, 10, 10, 10, 10, 10, 11, 16, 6, 16, 11, 12, 22, 2, 22, 12, 13, 3, 23, 3, 13, 14, 9, 19, 9, 14, 15, 15, 15, 15, 15, 16, 21, 11, 21, 16, 17
Offset: 0
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1).
Crossrefs
Programs
-
Mathematica
Table[Mod[Binomial[n+5,n],25],{n,0,90}] (* Harvey P. Dale, Jan 12 2023 *)
Formula
a(n)=binomial(n+5,5) mod 5^2.
G.f. g(x)=sum{0<=k<125, a(k)*x^k}/(1-x^125).
Comments