cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133894 Numbers m such that binomial(m+4,m) mod 4 = 0.

Original entry on oeis.org

12, 13, 14, 15, 28, 29, 30, 31, 44, 45, 46, 47, 60, 61, 62, 63, 76, 77, 78, 79, 92, 93, 94, 95, 108, 109, 110, 111, 124, 125, 126, 127, 140, 141, 142, 143, 156, 157, 158, 159, 172, 173, 174, 175, 188, 189, 190, 191, 204, 205, 206, 207, 220, 221, 222, 223, 236, 237
Offset: 1

Views

Author

Hieronymus Fischer, Oct 20 2007

Keywords

Comments

Also numbers m such that floor(1+(m/4)) mod 4 = 0.
Partial sums of the sequence 12,1,1,1,13,1,1,1,13, ... which has period 4.
Numbers congruent to {12,13,14,15} mod 16. Numbers n such that n xor 12 = n - 12. [Brad Clardy, May 06 2013]

Crossrefs

Programs

Formula

a(n) = 4*n + 12 - 3*(n mod 4).
G.f.: 12/(1-x)+x(1+x+x^2+13x^3)/((1-x^4)(1-x)) = (12+x+x^2+x^3+x^4)/((1-x^4)(1-x)) = (12-11x-x^5)/((1-x^4)(1-x)^2).
a(n) = 4*n+3*((1-i)*i^n+(1+i)*(-i)^n+(-1)^n+5)/2, where i=sqrt(-1). - Bruno Berselli, Apr 08 2011