cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133915 a(n) = Sum_{i=0..n} C(2*n-i,n+i)*2^i.

Original entry on oeis.org

1, 2, 8, 30, 116, 452, 1772, 6974, 27524, 108852, 431168, 1709996, 6788536, 26971856, 107235668, 426594110, 1697855876, 6760326116, 26927208368, 107288242820, 427596003416, 1704598377176, 6796820059928, 27106584400460, 108123625907816, 431355955330952
Offset: 0

Views

Author

Paul Barry, Sep 28 2007

Keywords

Comments

A transform of the Jacobsthal numbers A001045(n+1) under the mapping g(x)->(1/(c(x)*sqrt(1-4*x)))*g(x*c(x)), c(x) the g.f. of A000108. Hankel transform is A001787(n+1).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-4*x+(1-x)*Sqrt[1-4*x])/((x+2)*(1-4*x)^(3/2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    a(n) = sum(i=0, n, binomial(2*n-i, n+i)*2^i); \\ Michel Marcus, Jul 08 2021

Formula

G.f.: (1-4*x+(1-x)*sqrt(1-4*x))/((x+2)*(1-4*x)^(3/2)).
a(n) = Sum_{k=0..n} C(2*n-k,n+k)*2^k.
a(n) = Sum_{k=0..n} C(n+k-1,k)*A001045(n-k+1).
2*n*a(n) +3*(4-5*n)*a(n-1) +6*(4*n-7)*a(n-2) + 8*(2*n-3)*a(n-3)=0. - R. J. Mathar, Nov 14 2011
a(n) ~ 4^n/3. - Vaclav Kotesovec, Oct 20 2012