A133920 Decimal expansion of the first real inflection point of the jinc function.
2, 2, 9, 9, 9, 1, 0, 3, 3, 0, 2, 2, 8, 4, 1, 0, 9, 1, 4, 9, 5, 8, 1, 1, 0, 6, 9, 1, 0, 5, 0, 6, 2, 5, 4, 4, 7, 2, 6, 5, 6, 7, 3, 2, 9, 0, 3, 6, 5, 8, 0, 5, 6, 1, 1, 2, 7, 4, 9, 9, 5, 5, 1, 6, 1, 6, 8, 6, 9, 1, 6, 3, 7, 5, 0, 5, 3, 5, 7, 5, 9, 3, 8, 7, 0, 9, 1, 9, 4, 9, 8, 9, 6, 3, 9, 6, 8, 2, 6, 0, 6, 9, 4, 1, 2
Offset: 1
Examples
2.2999103302284109149...
Links
- Eric Weisstein's World of Mathematics, Jinc Function
Programs
-
Mathematica
x0 = x /. FindRoot[3x*BesselJ[0, x] + (x^2 - 6)*BesselJ[1, x] == 0, {x, 2}, WorkingPrecision -> 105]; RealDigits[x0][[1]] (* Jean-François Alcover, Oct 26 2012, after Eric W. Weisstein *)
-
PARI
solve(x=2,3,3*x*besselj(0,x)+(x^2-6)*besselj(1,x)) \\ Charles R Greathouse IV, Feb 19 2014