A133952 a(n) = the number of "isolated divisors" of n!. A positive divisor, k, of n is isolated if neither (k-1) nor (k+1) divides n.
1, 0, 1, 4, 10, 19, 43, 77, 137, 243, 497, 749, 1520, 2518, 3952, 5294, 10628, 14564, 29199, 40855, 60605, 95786, 191700, 242580, 339732, 531896, 677048, 916946, 1834106, 2332346, 4664982, 5528982, 7863685, 12164443, 16422235, 19594843
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..60 (terms 1..50 from Ray Chandler)
Programs
-
Maple
A133952 := proc(n) local divs,k,i,a ; divs := sort(convert(numtheory[divisors](n!), list)) ; a := 0 ; for i from 1 to nops(divs) do k := op(i,divs) ; if not k-1 in divs and not k+1 in divs then a := a+1 ; fi ; od: RETURN(a) ; end: for n from 1 do printf("%d,",A133952(n)) ; od: # R. J. Mathar, Oct 19 2007
Extensions
Corrected and extended by R. J. Mathar, Oct 19 2007
a(26)-a(35) from Ray Chandler, May 28 2008
a(36)-a(50) from Ray Chandler, Jun 20 2008