cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A134013 Expansion of q * phi(q) * psi(q^8) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 6, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 1, 4, 0, 0, 4, 0, 0
Offset: 1

Views

Author

Michael Somos, Oct 02 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 2*q^2 + 2*q^5 + q^9 + 4*q^10 + 2*q^13 + 2*q^17 + 2*q^18 + 3*q^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/2) EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q^4], {q, 0, n}]; (* Michael Somos, Oct 30 2015 *)
  • PARI
    {a(n) = if( n>0 && (n+1)%4\2, (n%4) * sumdiv( n/gcd(n,2), d, (-1)^(d\2)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^16 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^8 + A)), n))};

Formula

Expansion of eta(q^2)^5 * eta(q^16)^2 / ( eta(q)^2 * eta(q^4)^2 * eta(q^8) ) in powers of q.
Euler transform of period 16 sequence [ 2, -3, 2, -1, 2, -3, 2, 0, 2, -3, 2, -1, 2, -3, 2, -2, ...].
Moebius transform is period 16 sequence [ 1, 1, -1, -2, 1, -1, -1, 0, 1, 1, -1, 2, 1, -1, -1, 0, ...].
a(n) is multiplicative with a(2) = 2, a(2^e) = 0 if e>1, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A134014.
a(4*n) = a(4*n + 3) = a(8*n + 6) = 0. a(8*n + 2) = 2 * a(4*n + 1).
G.f.: Sum_{k>0} Kronecker(-4, k) * x^k * (1 + x^k)^2 / (1 - x^(4*k)).
a(n) = -(-1)^n * A112301(n). a(4*n + 1) = A008441(n). a(8*n + 1) = A113407(n). a(8*n = 5) = 2 * A053692(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/4 (A003881). - Amiram Eldar, Nov 24 2023

A134015 Expansion of (1 - phi(-q) * phi(q^4)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 0, 0, -2, 2, 0, 0, -2, 1, 0, 0, 0, 2, 0, 0, -2, 2, 0, 0, -4, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, -2, 2, 0, 0, -4, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, -4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, 4, 0, 0, -4, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, -4, 1, 0, 0
Offset: 1

Views

Author

Michael Somos, Oct 02 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = x - 2*x^4 + 2*x^5 - 2*x^8 + x^9 + 2*x^13 - 2*x^16 + 2*x^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1 - EllipticTheta[ 4, 0, x] EllipticTheta[ 3, 0, x^4]) / 2, {x, 0, n}]; (* Michael Somos, Oct 28 2015 *)
    a[ n_] := If[ n < 1 || Mod[n, 4] > 1, 0, (Mod[n, 2] 3 - 2) DivisorSum[ n, KroneckerSymbol[ -4, #]&]]; (* Michael Somos, Oct 28 2015 *)
  • PARI
    {a(n) = if( n<1 || n%4>1, 0, (n%2*3 - 2) * sumdiv(n, d, kronecker(-4, d)))};
    
  • PARI
    {a(n) = -(-1)^n * if( n<1, 0, qfrep([1, 0; 0, 4], n)[n])};

Formula

Moebius transform is period 16 sequence [ 1, -1, -1, -2, 1, 1, -1, 0, 1, -1, -1, 2, 1, 1, -1, 0, ...].
a(n) is multiplicative with a(2) = 0, a(2^e) = -2 if e>1, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) = (1+(-1)^e)/2 if p == 3 (mod 4).
a(4*n+2) = a(4*n+3) = 0.
G.f.: x / (1 + x^2) + x^3 / (1 + x^6) - 2 * x^4 / (1 + x^8) + ...
a(n) = -(-1)^n * A113406(n). -2 * a(n) = A134014(n) unless n=0. a(4*n) = -2 * A002654(n). a(4*n + 1) = A008441(n).
Showing 1-2 of 2 results.