cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134025 Numbers for which the balanced ternary representation is the same length as the ternary representation.

Original entry on oeis.org

0, 1, 3, 4, 9, 10, 11, 12, 13, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 19 2007

Keywords

Comments

A003462 is a subsequence; A171960(a(n)) >= a(n). - Reinhard Zumkeller, Jan 20 2010

Crossrefs

Complement of A134026.

Programs

  • Maple
    0,seq($3^(d-1)..floor(3^d/2), d=0..5); # Robert Israel, Dec 14 2015
  • Mathematica
    f[n_, m_, k_] := If[n == 0, k, If[k < (3^(m + 1) - 1)/2, f[n - 1, m, k + 1], f[n - 1, m + 1, 3^(m + 1)]]]; Table[f[n, 0, 0], {n, 0, 63}] (* L. Edson Jeffery, Dec 10 2015 *)

Formula

a(n) = f(n,0,0) with f(n,m,k) = if n=0 then k else if k<(3^(m+1)-1)/2 then f(n-1,m,k+1) else f(n-1,m+1,3^(m+1)).
A134021(a(n)) = A081604(a(n)).
G.f.: x/(1-x)^2 + (1-x)^(-1)*Sum_{j>=1} ((3^j-1)/2) * x^(3/4 + 3^j/2 + j/2). - Robert Israel, Dec 14 2015