A134025 Numbers for which the balanced ternary representation is the same length as the ternary representation.
0, 1, 3, 4, 9, 10, 11, 12, 13, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Crossrefs
Complement of A134026.
Programs
-
Maple
0,seq($3^(d-1)..floor(3^d/2), d=0..5); # Robert Israel, Dec 14 2015
-
Mathematica
f[n_, m_, k_] := If[n == 0, k, If[k < (3^(m + 1) - 1)/2, f[n - 1, m, k + 1], f[n - 1, m + 1, 3^(m + 1)]]]; Table[f[n, 0, 0], {n, 0, 63}] (* L. Edson Jeffery, Dec 10 2015 *)
Formula
a(n) = f(n,0,0) with f(n,m,k) = if n=0 then k else if k<(3^(m+1)-1)/2 then f(n-1,m,k+1) else f(n-1,m+1,3^(m+1)).
G.f.: x/(1-x)^2 + (1-x)^(-1)*Sum_{j>=1} ((3^j-1)/2) * x^(3/4 + 3^j/2 + j/2). - Robert Israel, Dec 14 2015
Comments