cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134030 Area of regular n-sided polygon with length of each side equal to 1 (rounded).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 18, 20, 23, 26, 28, 32, 35, 38, 42, 46, 49, 54, 58, 62, 67, 71, 76, 81, 86, 92, 97, 103, 109, 115, 121, 127, 134, 140, 147, 154, 161, 168, 176, 183, 191, 199, 207, 215, 223, 232, 240, 249, 258, 267, 277, 286
Offset: 3

Views

Author

Ben Paul Thurston, Jan 11 2008

Keywords

Examples

			The exact values of the areas of regular n-gons with side 1 for n = 3 .. 12 are:
 (1/4)*3^(1/2), 1, (5/4)*cot((1/5)*Pi), (3/2)*3^(1/2), (7/4)*cot((1/7)*Pi), 2*cot((1/8)*Pi), (9/4)*cot((1/9)*Pi), (5/2)*cot((1/10)*Pi), (11/4)*cot((1/11)*Pi), 3*cot((1/12)*Pi).
The floating-point values are [0.4330127020, 1, 1.720477400, 2.598076212, 3.633912443, 4.828427124, 6.181824193, 7.694208842, 9.365639904, 11.19615242], so the rounded values are [0, 1, 2, 3, 4, 5, 6, 8, 9, 11]. - _N. J. A. Sloane_, Mar 11 2024
		

Crossrefs

Cf. A064313 (same with floor).

Programs

  • PARI
    a(n) = round(n / (4*tan(Pi/n))); \\ Michel Marcus, Sep 04 2013

Formula

a(n) = round(n/(4*tan(Pi/n))).

Extensions

Corrected by N. J. A. Sloane, Mar 11 2024 at the suggestion of Felix Huber