cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134109 Number of integral solutions with nonnegative y to Mordell's equation y^2 = x^3 - n.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 2, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 2, 1, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 0, 1, 1, 0, 3, 2, 1, 0, 0, 0, 2, 1, 2, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 3
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2007, Oct 14 2007

Keywords

Comments

a(n) = A081120(n)/2 if A081120(n) is even, (A081120(n)+1)/2 if A081120(n) is odd (i.e. if n is a cubic number).
Comment from T. D. Noe, Oct 12 2007: In sequences A134108 and A134109 (this entry) dealing with the equation y^2 = x^3 + n, one could note that these are Mordell equations. Here are some related sequences: A054504, A081119, A081120, A081121. The link "Integer points on Mordell curves" has data on 20000 values of n. A134108 and A134109 count only solutions with y >= 0 and can be derived from A081119 and A081120.

Examples

			y^2 = x^3 - 4 has solutions (y, x) = (2, 2) and (11, 5), hence a(4) = 2.
y^2 = x^3 - 5 has no solutions, hence a(5) = 0.
y^2 = x^3 - 8 has solution (y, x) = (0, 2), hence a(8) = 1.
y^2 = x^3 - 207 has 7 solutions (see A134106, A134107), hence a(207) = 7.
		

Crossrefs

Programs

  • Magma
    [ #{ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0, -n])) }: n in [1..104] ];
  • Mathematica
    A081120 = Cases[Import["https://oeis.org/A081120/b081120.txt", "Table"], {, }][[All, 2]];
    a[n_] := With[{an = A081120[[n]]}, If[EvenQ[an], an/2, (an+1)/2]];
    a /@ Range[10000] (* Jean-François Alcover, Nov 28 2019 *)