A134109 Number of integral solutions with nonnegative y to Mordell's equation y^2 = x^3 - n.
1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 2, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 2, 1, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 0, 1, 1, 0, 3, 2, 1, 0, 0, 0, 2, 1, 2, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 3
Offset: 1
Keywords
Examples
y^2 = x^3 - 4 has solutions (y, x) = (2, 2) and (11, 5), hence a(4) = 2. y^2 = x^3 - 5 has no solutions, hence a(5) = 0. y^2 = x^3 - 8 has solution (y, x) = (0, 2), hence a(8) = 1. y^2 = x^3 - 207 has 7 solutions (see A134106, A134107), hence a(207) = 7.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..10000
- J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]
- Eric Weisstein's World of Mathematics, Mordell Curve
Programs
-
Magma
[ #{ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0, -n])) }: n in [1..104] ];
-
Mathematica
A081120 = Cases[Import["https://oeis.org/A081120/b081120.txt", "Table"], {, }][[All, 2]]; a[n_] := With[{an = A081120[[n]]}, If[EvenQ[an], an/2, (an+1)/2]]; a /@ Range[10000] (* Jean-François Alcover, Nov 28 2019 *)
Comments