A134201 Number of rigid hypergroups of order n.
1, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1
References
- R. Bayon and N. Lygeros, Hyperstructures and Automorphism Groups, submitted.
- F. Marty, Sur une généralisation de la notion de groupe. In Proc. 8th Congr. des Mathématiciens Scandinaves, Stockholm, pp. 45-49, 1934.
- Th. Vougiouklis, The fundamental relation in hyperrings: The general hyperfield, Fourth Int. Congress Algebraic Hyperstructures and Appl. (AHA), 1991, pp. 203-211.
Links
- Index entries for linear recurrences with constant coefficients, signature (1).
Programs
-
Mathematica
Array[If[# <= 2, #, 6] &, 105] (* Michael De Vlieger, Dec 01 2019 *)
Formula
a(1) = 1, a(2) = 2, a(n) = 6 for n > 2.
G.f.: x*(1 + x + 4*x^2)/(1 - x). - Stefano Spezia, Mar 23 2022
E.g.f.: 6*exp(x) - 6 - 5*x - 2*x^2. - Elmo R. Oliveira, Aug 09 2024
Comments