A134207 a(0) = 2; for n > 0, a(n) = the smallest prime which is > a(n-1) such that a(n-1) + a(n) is a multiple of n.
2, 3, 5, 7, 13, 17, 19, 23, 41, 67, 73, 103, 113, 173, 191, 199, 233, 277, 281, 479, 521, 571, 617, 809, 823, 827, 863, 919, 929, 1217, 1303, 1487, 1489, 1613, 1753, 2027, 2113, 2179, 2267, 2647, 2713, 3109, 3191, 3259, 3517, 3593, 3767, 3847, 3881, 4057
Offset: 0
Keywords
Examples
The primes that are > a(8)=41 form the sequence 43,47,53,59,61,67,71,... Of these, 67 is the smallest that when added to a(8)=41 gets a multiple of 9 -- 41+67 = 108 = 9*12. (41+p is not divisible by 9 for p = any prime which is > 41 and is < 67.) So a(9) = 67.
Links
- Eric M. Schmidt, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
a = {2}; For[n = 1, n < 100, n++, i = 1; While[Not[Mod[a[[ -1]] + Prime[PrimePi[a[[ -1]]] + i], n] == 0], i++ ]; AppendTo[a, Prime[PrimePi[a[[ -1]]] + i]]]; a (* Stefan Steinerberger, Oct 17 2007 *)
-
Sage
def A134207(max) : res = [2]; p = 3 for n in range(1,max+1) : while (res[n-1] + p) % n != 0 : p = next_prime(p) res.append(p); p = next_prime(p) return res # Eric M. Schmidt, May 23 2013
Extensions
More terms from Stefan Steinerberger, Oct 17 2007