cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A180609 G.f. L(x) satisfies: L(x) = L(exp(x)-1)*(1-exp(-x))/x = Sum_{n>=1} a(n)*x^n/(n!*(n+1)!).

Original entry on oeis.org

1, -1, 3, -16, 110, -540, -9240, 292320, 14908320, -1639612800, -33013854720, 21046667685120, -549927873855360, -637881314775344640, 76198391578224115200, 41404329870413936025600, -12499862617277304901632000, -5212560012919105291193548800, 3436632117109253032257698611200, 1146156616720354265092896141312000, -1615552168543480516126725021634560000, -379914190499326491647463301427478528000, 1268235921756889621556352102589895172096000
Offset: 1

Views

Author

Paul D. Hanna, Sep 12 2010

Keywords

Examples

			G.f.: L(x) = x/(1!*2!) - x^2/(2!*3!) + 3*x^3/(3!*4!) - 16*x^4/(4!*5!) + 110*x^5/(5!*6!) - 540*x^6/(6!*7!) - 9240*x^7/(7!*8!) + 292320*x^8/(8!*9!) -+...
The Riordan array ((exp(x)-1)/x, exp(x)-1) begins:
1;
1/(1!2!), 1;
2/(2!3!), 2/(1!2!), 1;
6/(3!4!), 7/(2!3!), 3/(1!2!), 1;
24/(4!5!), 36/(3!4!), 15/(2!3!), 4/(1!2!), 1;
120/(5!6!), 248/(4!5!), 108/(3!4!), 26/(2!3!), 5/(1!2!), 1;
720/(6!7!), 2160/(5!6!), 1032/(4!5!), 240/(3!4!), 40/(2!3!), 6/(1!2!), 1; ...
where the g.f. of column k = ((exp(x)-1)/x)^(k+1) for k>=0.
...
The matrix log of the above array begins:
0;
1/(1!2!), 0;
-1/(2!3!), 2/(1!2!), 0;
3/(3!4!), -2/(2!3!), 3/(1!2!), 0;
-16/(4!5!), 6/(3!4!), -3/(2!3!), 4/(1!2!), 0;
110/(5!6!), -32/(4!5!), 9/(3!4!), -4/(2!3!), 5/(1!2!), 0;
-540/(6!7!), 220/(5!6!), -48/(4!5!), 12/(3!4!), -5/(2!3!), 6/(1!2!), 0;
-9240/(7!8!), -1080/(6!7!), 330/(5!6!), -64/(4!5!), 15/(3!4!), -6/(2!3!), 7/(1!2!), 0; ...
in which the g.f. of column k equals (k+1)*L(x) for k>=0 and L(x) is the g.f. of this sequence.
		

Crossrefs

Cf. A180610.
The fractions a(n)/n! are A134242(n)/A134243(n).

Programs

  • Mathematica
    K[1] = 1;
    K[n_] := K[n] = -2/((n+2)(n-1)) Sum[StirlingS2[n+1, i] K[i], {i, 1, n-1}];
    a[n_] := n! K[n];
    Array[a, 23] (* Jean-François Alcover, Jul 26 2018, from the Manetti-Ricciardi recurrence *)
  • PARI
    {a(n)=local(M=matrix(n+1,n+1,r,c,if(r>=c,polcoeff(((exp(x+x^2*O(x^n))-1)/x)^c,r-c))),L=sum(n=1,#M,-(M^0-M)^n/n));n!*(n+1)!*L[n+1,1]}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. satisfies: L(x) = (1+x)*log(1+x) * L( log(1+x) ) /x.
Let E_n(x) = E_{n-1}(exp(x)-1) denote the n-th iteration of exp(x)-1, then
. L(E_n(x)) = L(x) * x * E_n'(x) / E_n(x) for all n.
G.f. L(x) forms column 0 in the matrix log of the Riordan array ((exp(x)-1)/x, exp(x)-1).
Manetti-Ricciardi Theorem 4.4 give a recurrence for K_n := a(n)/n! in terms of Stirling numbers. - N. J. A. Sloane, May 25 2016

A134243 Denominators of certain constants c_n = A180609(n)/n! related to Hurwitz numbers.

Original entry on oeis.org

1, 2, 2, 3, 12, 4, 6, 4, 12, 6, 15, 60, 120, 60, 20, 60, 3, 5, 60, 120, 8, 1260, 2520, 168, 56, 168, 168, 840, 84, 840, 21, 140, 420, 630, 120, 280, 420, 840, 504, 2520, 840, 840, 315, 2520, 2520, 315, 84, 90, 30, 180, 360, 120, 120, 210, 24, 495, 1980, 2640, 55440, 315, 55440, 45, 2772, 6930, 27720, 9240, 770, 1848, 27720, 27720
Offset: 1

Views

Author

N. J. A. Sloane, Jan 30 2008

Keywords

Comments

Manetti-Ricciardi refer to the c_n as Koszul numbers.

Examples

			The fractions are 1, -1/2, 1/2, -2/3, 11/12, -3/4, -11/6, 29/4, 493/12, -2711/6, -12406/15, 2636317/60, -10597579/120, -439018457/60, 1165403153/20, 118734633647/60, ...
		

Crossrefs

Programs

  • Mathematica
    K[1] = 1;
    K[n_] := K[n] = -2/((n+2)(n-1)) Sum[StirlingS2[n+1, i] K[i], {i, 1, n-1}];
    Table[Denominator[K[n]], {n, 1, 70}] (* Jean-François Alcover, Jul 26 2018 *)

Formula

Manetti-Ricciardi Theorem 4.4 give a recurrence for the c_n in terms of Stirling numbers.

Extensions

More terms from Manetti-Ricciardi added by N. J. A. Sloane, May 25 2016
Showing 1-2 of 2 results.