cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134307 Primes p such that A^(p-1) == 1 (mod p^2) for some A in the range 2 <= A <= p-1.

Original entry on oeis.org

11, 29, 37, 43, 59, 71, 79, 97, 103, 109, 113, 127, 131, 137, 151, 163, 181, 191, 197, 199, 211, 223, 229, 233, 241, 257, 263, 269, 281, 283, 293, 307, 313, 331, 347, 349, 353, 359, 367, 373, 379, 397, 401, 419, 421, 433, 439, 449, 461, 463, 487, 499, 509
Offset: 1

Views

Author

Joerg Arndt, Aug 27 2008

Keywords

Comments

It's worth observing that there are p-1 elements of order dividing p-1 modulo p^2 that are of the form r^(k*p) mod p^2 where r is a primitive element modulo p and k=0,1,...,p-2. Heuristically, one can expect that at least one of them belongs to the interval [2,p-1] with probability about 1 - (1 - 1/p)^(p-1) ~= 1 - 1/e.
Numerically, among the primes below 1000 (out of the total number pi(1000)=168) there are 103 terms of the sequence, and the ratio 103/168 = 0.613 which is already somewhat close to 1-1/e ~= 0.632.
If we replace p^2 with p^3, heuristically it is likely that the sequence is finite (since 1 - (1 - 1/p^2)^(p-1) tends to 0 as p grows). - Max Alekseyev, Jan 09 2009
Replacing p^2 with p^3 gives just the one term (113) for p < 10^6. - Joerg Arndt, Jan 07 2011
If furthermore the number A can be taken to be a primitive root modulo p, i.e., A is a generator of (Z/pZ)*, then that p belongs to A060503. - Jeppe Stig Nielsen, Jul 31 2015
The number of terms not exceeding prime(10^k), for k=1,2,..., are 2, 55, 652, 6303, 63219, ... - Amiram Eldar, May 08 2021

Examples

			Examples (pairs [p, A]):
[11, 3]
[11, 9]
[29, 14]
[37, 18]
[43, 19]
[59, 53]
[71, 11]
[71, 26]
[79, 31]
[97, 53]
		

References

  • L. E. Dickson, History of the theory of numbers, vol. 1, p. 105.

Crossrefs

Programs

  • Mathematica
    Select[ Prime[ Range[100]], Product[ (PowerMod[a, # - 1, #^2] - 1), {a, 2, # - 1}] == 0 &] (* Jonathan Sondow, Feb 11 2013 *)
  • PARI
    { forprime (p=2, 1000,
       for (a=2, p-1, p2 = p^2;
         if( Mod(a, p2)^(p-1) == Mod(1, p2), print1(p, ", ") ;break() );
      ); ); }