A134307 Primes p such that A^(p-1) == 1 (mod p^2) for some A in the range 2 <= A <= p-1.
11, 29, 37, 43, 59, 71, 79, 97, 103, 109, 113, 127, 131, 137, 151, 163, 181, 191, 197, 199, 211, 223, 229, 233, 241, 257, 263, 269, 281, 283, 293, 307, 313, 331, 347, 349, 353, 359, 367, 373, 379, 397, 401, 419, 421, 433, 439, 449, 461, 463, 487, 499, 509
Offset: 1
Keywords
Examples
Examples (pairs [p, A]): [11, 3] [11, 9] [29, 14] [37, 18] [43, 19] [59, 53] [71, 11] [71, 26] [79, 31] [97, 53]
References
- L. E. Dickson, History of the theory of numbers, vol. 1, p. 105.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Wilfrid Keller and Jörg Richstein Fermat quotients that are divisible by p.
Programs
-
Mathematica
Select[ Prime[ Range[100]], Product[ (PowerMod[a, # - 1, #^2] - 1), {a, 2, # - 1}] == 0 &] (* Jonathan Sondow, Feb 11 2013 *)
-
PARI
{ forprime (p=2, 1000, for (a=2, p-1, p2 = p^2; if( Mod(a, p2)^(p-1) == Mod(1, p2), print1(p, ", ") ;break() ); ); ); }
Comments