cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A134311 Row sums of triangle A134310.

Original entry on oeis.org

1, 2, 7, 20, 51, 122, 281, 632, 1399, 3062, 6645, 14324, 30707, 65522, 139249, 294896, 622575, 1310702, 2752493, 5767148, 12058603, 25165802, 52428777, 109051880, 226492391, 469762022, 973078501, 2013265892, 4160749539
Offset: 0

Views

Author

Gary W. Adamson, Oct 21 2007

Keywords

Examples

			a(3) = 20 = sum of row 4 terms of triangle A134310: (4 + 4 + 5 + 7).
a(3) = 20 = (1, 3, 3, 1) dot (1, 1, 4, 4) = (1 + 3 + 12 + 4).
		

Crossrefs

Cf. A134310.

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{6,-13,12,-4},{2,7,20,51},30]] (* Harvey P. Dale, Apr 16 2013 *)
  • PARI
    apply( {A134311(n)=max(n+3,4)<<(n-1)-n-1}, [0..33]) \\ M. F. Hasler, Mar 29 2022
  • Python
    a = lambda n: (n+3)*2**(n-1)-n-1 if n > 0 else 1
    print([a(n) for n in range(40)]) # Gennady Eremin, Mar 26 2022
    

Formula

Binomial transform of [1, 1, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, ...].
For n > 0, a(n) = (n+3)*2^(n-1) - n - 1. - R. J. Mathar, Apr 04 2012, edited by M. F. Hasler, Mar 29 2022
G.f.: (2*x^4-8*x^3+8*x^2-4*x+1)/((x-1)^2*(2*x-1)^2). - Colin Barker, Aug 13 2012

Extensions

Offset corrected to 0 by M. F. Hasler, Mar 29 2022
Showing 1-1 of 1 results.