A134314 First differences of A134429.
-8, 8, -8, 16, -24, 24, -24, 32, -40, 40, -40, 48, -56, 56, -56, 64, -72, 72, -72, 80, -88, 88, -88, 96, -104, 104, -104, 112, -120, 120, -120, 128, -136, 136, -136, 144, -152, 152, -152, 160, -168, 168, -168, 176, -184, 184, -184, 192, -200, 200, -200, 208
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (-2,-2,-2,-1).
Programs
-
Maple
A134429 := proc(n) npr := floor(n/4) ; if (n mod 4 =0) or (n mod 4 = 2) then 8*npr+3 ; else -8*npr-5 ; fi; end: A134314 := proc(n) A134429(n+1)-A134429(n) ; end: seq(A134314(n),n=0..80) ; # R. J. Mathar, Feb 07 2009
-
Mathematica
LinearRecurrence[{-2, -2, -2, -1}, {-8, 8, -8, 16}, 52] (* Jean-François Alcover, Mar 31 2020 *)
Formula
From R. J. Mathar, Feb 07 2009: (Start)
a(n)= -2*a(n-1)-2*a(n-2)-2*a(n-3)-a(n-4) = -8*(-1)^n*A004525(n+1).
G.f.: -8*(1+x+x^2)/((1+x^2)*(1+x)^2). (End)
Extensions
Edited by N. J. A. Sloane, Mar 23 2008
More terms from R. J. Mathar, Feb 07 2009