cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134319 Triangle read by rows. T(n, k) = binomial(n, k)*(2^k - 1 + 0^k).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 9, 7, 1, 4, 18, 28, 15, 1, 5, 30, 70, 75, 31, 1, 6, 45, 140, 225, 186, 63, 1, 7, 63, 245, 525, 651, 441, 127, 1, 8, 84, 392, 1050, 1736, 1764, 1016, 255, 1, 9, 108, 588, 1890, 3906, 5292, 4572, 2295, 511, 1, 10, 135, 840, 3150, 7812, 13230, 15240, 11475, 5110, 1023
Offset: 0

Views

Author

Gary W. Adamson, Oct 19 2007

Keywords

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 2,  3;
  1, 3,  9,   7;
  1, 4, 18,  28,  15;
  1, 5, 30,  70,  75,  31;
  1, 6, 45, 140, 225, 186,  63;
  1, 7, 63, 245, 525, 651, 441, 127;
  ...
		

Crossrefs

Cf. A083313, A083323 (row sums), A255047 (main diagonal).

Programs

  • Maple
    x:= 'x': T:= (n,k)-> `if` (k=0, 1, abs(coeff(expand((1-1/2^x)^n -(1-2/2^x)^n), 1/(2^x)^k))): seq(seq(T(n,k), k=0..n), n=0..12); # Alois P. Heinz, Dec 10 2008
    # Alternative:
    T := (n, k) -> binomial(n, k)*(2^k - 1 + 0^k):
    for n from 0 to 7 do seq(T(n, k), k=0..n) od;
    # Or as a recursion:
    p := proc(n, m) option remember; if n = 0 then max(1, m) else
        (m + x)*p(n - 1, m) - (m + 1)*p(n - 1, m + 1) fi end:
    Trow := n -> seq((-1)^k * coeff(p(n, 0), x, n - k), k = 0..n):  # Peter Luschny, Jun 23 2023
  • Mathematica
    max = 10; T1 = Table[Binomial[n, k], {n, 0, max}, {k, 0, max}]; T2 = Table[ If[n == k, 2^n-1, 0], {n, 0, max}, {k, 0, max}]; TT = T1.T2 ; T[, 0]=1; T[n, k_] := TT[[n+1, k+1]]; Table[T[n, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 26 2016 *)

Formula

Previous definition: A007318 * a triangle by rows: for n > 0, n zeros followed by 2^n - 1.
Binomial transform of a diagonalized infinite lower triangular matrix with (1, 1, 3, 7, 15, ...) in the main diagonal and the rest zeros.
T(n,k) = |[1/(2^x)^k] 1 + (1-1/2^x)^n - (1-2/2^x)^n|. - Alois P. Heinz, Dec 10 2008
T(n,k) = binomial(n,k)*M(k) where M is Mersenne-like A255047. - Yuchun Ji, Feb 13 2019

Extensions

More terms from Alois P. Heinz, Dec 10 2008
New name using a formula of Yuchun Ji by Peter Luschny, Jun 23 2023