cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134337 Number of partitions into distinct odd squarefree parts.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 3, 4, 3, 4, 5, 5, 6, 6, 7, 8, 7, 8, 9, 9, 11, 10, 12, 14, 14, 16, 17, 20, 21, 21, 25, 27, 27, 29, 31, 35, 35, 36, 42, 44, 45, 49, 55, 59, 61, 66, 74, 77, 81, 87, 93, 99, 102, 110, 117, 123, 131, 138, 148, 159, 167, 178, 190, 204, 215, 225
Offset: 0

Views

Author

Joerg Arndt, Aug 27 2008

Keywords

Comments

Also number of partitions into distinct parts m such that 2*m is squarefree

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-2)+`if`(i>n or not issqrfree(i), 0, b(n-i, i-2))))
        end:
    a:= n-> b(n, n-1+irem(n, 2)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jul 23 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-2] + If[i>n || !SquareFreeQ[i] , 0, b[n-i, i-2]]]]; a[n_] := b[n, n-1 + Mod[n, 2]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 08 2015, after Alois P. Heinz *)
  • PARI
    my(N=75, x='x+O('x^N)); Vec( prod(n=1,N, 1 + moebius(2*n-1)^2 * x^(2*n-1) ) )
    
  • PARI
    my(N=75, x='x+O('x^N)); Vec( prod(n=1,N, 1 + moebius(2*n)^2 * x^n ) )

Formula

G.f.: Product_{n>=1} (1 + moebius(2*n-1)^2 * x^(2*n-1)).
G.f.: Product_{n>=1} (1 + moebius(2*n)^2 * x^n).