A134337 Number of partitions into distinct odd squarefree parts.
1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 3, 4, 3, 4, 5, 5, 6, 6, 7, 8, 7, 8, 9, 9, 11, 10, 12, 14, 14, 16, 17, 20, 21, 21, 25, 27, 27, 29, 31, 35, 35, 36, 42, 44, 45, 49, 55, 59, 61, 66, 74, 77, 81, 87, 93, 99, 102, 110, 117, 123, 131, 138, 148, 159, 167, 178, 190, 204, 215, 225
Offset: 0
Keywords
Links
- Vincenzo Librandi and Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 0..200 from Vincenzo Librandi)
- Joerg Arndt, Matters Computational (The Fxtbook), section 16.4.3 "Partitions into square-free parts", pp.351-352
Programs
-
Maple
with(numtheory): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-2)+`if`(i>n or not issqrfree(i), 0, b(n-i, i-2)))) end: a:= n-> b(n, n-1+irem(n, 2)): seq(a(n), n=0..100); # Alois P. Heinz, Jul 23 2013
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-2] + If[i>n || !SquareFreeQ[i] , 0, b[n-i, i-2]]]]; a[n_] := b[n, n-1 + Mod[n, 2]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 08 2015, after Alois P. Heinz *)
-
PARI
my(N=75, x='x+O('x^N)); Vec( prod(n=1,N, 1 + moebius(2*n-1)^2 * x^(2*n-1) ) )
-
PARI
my(N=75, x='x+O('x^N)); Vec( prod(n=1,N, 1 + moebius(2*n)^2 * x^n ) )
Formula
G.f.: Product_{n>=1} (1 + moebius(2*n-1)^2 * x^(2*n-1)).
G.f.: Product_{n>=1} (1 + moebius(2*n)^2 * x^n).
Comments