cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134340 Expansion of psi(x)^3 * f(-x^3)^3 / chi(-x)^2 in powers of x where psi(), chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 5, 12, 22, 35, 50, 70, 92, 117, 145, 170, 210, 250, 287, 330, 362, 425, 477, 532, 600, 626, 715, 782, 850, 925, 962, 1100, 1162, 1247, 1335, 1370, 1520, 1617, 1750, 1810, 1850, 2040, 2147, 2262, 2380, 2451, 2625, 2752, 2882, 3015, 3005, 3290, 3500, 3577
Offset: 0

Views

Author

Michael Somos, Oct 21 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 5*x + 12*x^2 + 22*x^3 + 35*x^4 + 50*x^5 + 70*x^6 + 92*x^7 + 117*x^8 + ...
G.f. = q^5 + 5*q^11 + 12*q^17 + 22*q^23 + 35*q^29 + 50*q^35 + 70*q^41 + 94*q^47 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1/24) DivisorSum[ 6 n + 5, #^2 KroneckerSymbol[ -3, #] &]]; (* Michael Somos, Oct 25 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x]^2 QPochhammer[ x^3]^3 EllipticTheta[ 2, 0, x^(1/2)]^3 / (8 x^(3/8)), {x, 0, n}]; (* Michael Somos, Oct 25 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 6*n + 5; sumdiv(n, d, d^2 * kronecker( -3, d)) / -24 )};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 * eta(x^3 + A)^3 / eta(x + A)^5, n))};

Formula

Expansion of q^(-5/6) * eta(q^2)^8 * eta(q^3)^3 / eta(q)^5 in powers of q.
Euler transform of period 6 sequence [ 5, -3, 2, -3, 5, -6, ...].
-24 * a(n) = A103440(6*n + 5). 216 * a(n) = A109041(6*n + 5).