A134340 Expansion of psi(x)^3 * f(-x^3)^3 / chi(-x)^2 in powers of x where psi(), chi(), f() are Ramanujan theta functions.
1, 5, 12, 22, 35, 50, 70, 92, 117, 145, 170, 210, 250, 287, 330, 362, 425, 477, 532, 600, 626, 715, 782, 850, 925, 962, 1100, 1162, 1247, 1335, 1370, 1520, 1617, 1750, 1810, 1850, 2040, 2147, 2262, 2380, 2451, 2625, 2752, 2882, 3015, 3005, 3290, 3500, 3577
Offset: 0
Keywords
Examples
G.f. = 1 + 5*x + 12*x^2 + 22*x^3 + 35*x^4 + 50*x^5 + 70*x^6 + 92*x^7 + 117*x^8 + ... G.f. = q^5 + 5*q^11 + 12*q^17 + 22*q^23 + 35*q^29 + 50*q^35 + 70*q^41 + 94*q^47 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := If[ n < 0, 0, (-1/24) DivisorSum[ 6 n + 5, #^2 KroneckerSymbol[ -3, #] &]]; (* Michael Somos, Oct 25 2015 *) a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x]^2 QPochhammer[ x^3]^3 EllipticTheta[ 2, 0, x^(1/2)]^3 / (8 x^(3/8)), {x, 0, n}]; (* Michael Somos, Oct 25 2015 *)
-
PARI
{a(n) = if( n<0, 0, n = 6*n + 5; sumdiv(n, d, d^2 * kronecker( -3, d)) / -24 )};
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 * eta(x^3 + A)^3 / eta(x + A)^5, n))};
Comments