A134341 Numbers whose fifth powers have a partition as a sum of fifth powers of four positive integers.
144, 288, 432, 576, 720, 864, 1008, 1152, 1296, 1440, 1584, 1728, 1872, 2016, 2160, 2304, 2448, 2592, 2736, 2880, 3024, 3168, 3312, 3456, 3600, 3744, 3888, 4032, 4176, 4320, 4464, 4608, 4752, 4896, 5040, 5184, 5328, 5472, 5616, 5760, 5904, 6048, 6192
Offset: 1
Keywords
Examples
a(1) = 144 because 144^5 = 27^5 + 84^5 + 110^5 + 133^5; a(593) = 85359 because 85359^5 = 55^5 + 3183^5 + 28969^5 + 85282^5 = 4531548087264753520490799 (Jim Frye 2005). [Typo corrected by _Sébastien Palcoux_, Jul 05 2017]
References
- L. E. Dickson, History of the theory of numbers, Vol. 2, Chelsea, New York, 1952, p. 648.
Links
- L. J. Lander and T. R. Parkin, Counterexample to Euler's conjecture on sums of like powers, Bull. Amer. Math. Soc. 72 (6) (1966), p. 1079.
- Burkard Polster, Euler's and Fermat's last theorems, the Simpsons and CDC6600, Mathologer video (2018).
- Wikipedia, Euler's sum of powers conjecture
- Index to sequences related to Diophantine equations (5,1,4)
Extensions
Incorrect formula removed by Jianing Song, Jan 24 2020
Comments