A134344 Composite numbers such that the arithmetic mean of their prime factors (counted with multiplicity) is prime.
4, 8, 9, 16, 20, 21, 25, 27, 32, 33, 44, 49, 57, 60, 64, 68, 69, 81, 85, 93, 105, 112, 116, 121, 125, 128, 129, 133, 145, 156, 169, 177, 180, 188, 195, 205, 212, 213, 217, 220, 231, 237, 243, 249, 253, 256, 265, 272, 275, 289, 297, 309, 332, 336, 343, 356, 361
Offset: 1
Keywords
Examples
a(1) = 4, since 4 = 2*2 and the arithmetic mean (2+2)/2 = 2 is prime. a(5) = 20, since 20 = 2*2*5 and the arithmetic mean (2+2+5)/3 = 3 is prime.
Links
- Harvey P. Dale and Hieronymus Fischer, Table of n, a(n) for n = 1..10000 (first 1000 terms from _Harvey P. Dale_)
Crossrefs
Programs
-
Mathematica
ampfQ[n_]:=PrimeQ[Mean[Flatten[Table[#[[1]],{#[[2]]}]&/@FactorInteger[ n]]]]; nn=400;Select[Complement[Range[nn],Prime[Range[ PrimePi[nn]]]], ampfQ] (* Harvey P. Dale, Nov 06 2012 *)
-
PARI
is(n)=if(n<4,return(0)); my(f=factor(n),s=sum(i=1,#f~,f[i,1]*f[i,2])/sum(i=1,#f~,f[i,2])); (#f~>1 || f[1,2]>1) && denominator(s)==1 && isprime(s) \\ Charles R Greathouse IV, Sep 14 2015
Extensions
Definition clarified by Hieronymus Fischer, May 05 2013
Comments