cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134416 Expansion of eta(q^4)^2 / (eta(q^2) * eta(q)^6) in powers of q.

Original entry on oeis.org

1, 6, 28, 104, 342, 1016, 2808, 7296, 18044, 42750, 97656, 215992, 464360, 973176, 1993328, 3998592, 7870038, 15221232, 28968084, 54311736, 100421688, 183281904, 330468216, 589084288, 1038850488, 1813500030, 3135518440, 5372110496, 9124793472, 15371832424
Offset: 0

Views

Author

Michael Somos, Oct 26 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 6*q + 28*q^2 + 104*q^3 + 342*q^4 + 1016*q^5 + 2808*q^6 + 7296*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + x^k) * (1 + x^(2*k))^2 / (1 - x^k)^5, {k, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
    a[ n_] := SeriesCoefficient[ 1 / (EllipticTheta[ 4, 0 , q]^3 EllipticTheta[ 4, 0, q^2]^2), {q, 0, n}]; (* Michael Somos, Oct 16 2015 *)
    a[ n_] := SeriesCoefficient[ 1 / (EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q]^4), {q, 0, n}]; (* Michael Somos, Oct 16 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^3 / EllipticTheta[ 4, 0, q^2]^8, {q, 0, n}]; (* Michael Somos, Oct 16 2015 *)
    QP = QPochhammer; s = QP[q^4]^2/(QP[q^2]*QP[q]^6) + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 / (eta(x^2 + A) * eta(x + A)^6), n))};
    
  • PARI
    q='q+O('q^99); Vec(eta(q^4)^2/(eta(q^2)*eta(q)^6)) \\ Altug Alkan, Apr 16 2018

Formula

Euler transform of period 4 sequence [ 6, 7, 6, 5, ...].
G.f.: Product_{k>0} (1 + x^k) * (1 + x^(2*k))^2 / (1 - x^k)^5. [corrected by Vaclav Kotesovec, Sep 07 2015]
a(n) ~ exp(2*Pi*sqrt(n))/(32*n^2). - Vaclav Kotesovec, Sep 07 2015
-2 * a(n) = A134414(4*n).
Expansion of psi(q^2) / f(-q)^6 = phi(q)^3 / phi(-q^2)^8 = 1 / (phi(-q)^3 * phi(-q^2)^2) = 1 / (phi(q) * phi(-q)^4) in powers of q where phi(), psi(), f() are Ramanujan theta functions. - Michael Somos, Oct 16 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2^(-13/2) (t/i)^(-5/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A134414. - Michael Somos, Oct 16 2015
Convolution inverse is A245643. - Michael Somos, Oct 16 2015