A134416 Expansion of eta(q^4)^2 / (eta(q^2) * eta(q)^6) in powers of q.
1, 6, 28, 104, 342, 1016, 2808, 7296, 18044, 42750, 97656, 215992, 464360, 973176, 1993328, 3998592, 7870038, 15221232, 28968084, 54311736, 100421688, 183281904, 330468216, 589084288, 1038850488, 1813500030, 3135518440, 5372110496, 9124793472, 15371832424
Offset: 0
Keywords
Examples
G.f. = 1 + 6*q + 28*q^2 + 104*q^3 + 342*q^4 + 1016*q^5 + 2808*q^6 + 7296*q^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[Product[(1 + x^k) * (1 + x^(2*k))^2 / (1 - x^k)^5, {k, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *) a[ n_] := SeriesCoefficient[ 1 / (EllipticTheta[ 4, 0 , q]^3 EllipticTheta[ 4, 0, q^2]^2), {q, 0, n}]; (* Michael Somos, Oct 16 2015 *) a[ n_] := SeriesCoefficient[ 1 / (EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q]^4), {q, 0, n}]; (* Michael Somos, Oct 16 2015 *) a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^3 / EllipticTheta[ 4, 0, q^2]^8, {q, 0, n}]; (* Michael Somos, Oct 16 2015 *) QP = QPochhammer; s = QP[q^4]^2/(QP[q^2]*QP[q]^6) + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 / (eta(x^2 + A) * eta(x + A)^6), n))};
-
PARI
q='q+O('q^99); Vec(eta(q^4)^2/(eta(q^2)*eta(q)^6)) \\ Altug Alkan, Apr 16 2018
Formula
Euler transform of period 4 sequence [ 6, 7, 6, 5, ...].
G.f.: Product_{k>0} (1 + x^k) * (1 + x^(2*k))^2 / (1 - x^k)^5. [corrected by Vaclav Kotesovec, Sep 07 2015]
a(n) ~ exp(2*Pi*sqrt(n))/(32*n^2). - Vaclav Kotesovec, Sep 07 2015
-2 * a(n) = A134414(4*n).
Expansion of psi(q^2) / f(-q)^6 = phi(q)^3 / phi(-q^2)^8 = 1 / (phi(-q)^3 * phi(-q^2)^2) = 1 / (phi(q) * phi(-q)^4) in powers of q where phi(), psi(), f() are Ramanujan theta functions. - Michael Somos, Oct 16 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2^(-13/2) (t/i)^(-5/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A134414. - Michael Somos, Oct 16 2015
Convolution inverse is A245643. - Michael Somos, Oct 16 2015
Comments