A134422 Square numbers which are sums of 2 distinct nonzero squares.
25, 100, 169, 225, 289, 400, 625, 676, 841, 900, 1156, 1225, 1369, 1521, 1600, 1681, 2025, 2500, 2601, 2704, 2809, 3025, 3364, 3600, 3721, 4225, 4624, 4900, 5329, 5476, 5625, 6084, 6400, 6724, 7225, 7569, 7921, 8100, 8281, 9025, 9409, 10000, 10201
Offset: 1
Keywords
Examples
25 = 5^2 = 4^2 + 3^2, and so 25 is in the sequence. 100 = 10^2 = 8^2 + 6^2, and so 100 is in the sequence. 169 = 13^2 = 12^2 + 5^2, and so 169 is in the sequence.
Programs
-
Mathematica
c = {}; Do[Do[k = a^2 + b^2; If[IntegerQ[Sqrt[k]], AppendTo[c, k]], {a, 1, b - 1}], {b, 200}]; Union[c] (* Artur Jasinski *) Select[Range[100]^2, Length[PowersRepresentations[#, 2, 2]] > 1 &] (* Alonso del Arte, Feb 11 2014 *)
-
PARI
select(n->for(k=1,sqrtint(n\2),if(issquare(n-k^2), return(n>k^2)));0, vector(100,i,i^2)) \\ Charles R Greathouse IV, Jul 02 2013
Formula
a(n) = A009003(n)^2.