cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134424 Area under all paths in the first quadrant from (0,0) to (n,0) using steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0).

Original entry on oeis.org

0, 0, 1, 4, 21, 80, 316, 1152, 4186, 14812, 52020, 180616, 623338, 2138040, 7302035, 24842736, 84262609, 285052676, 962184359, 3241616628, 10903119167, 36619715860, 122837641530, 411588875136, 1377735161776, 4607695277512
Offset: 0

Views

Author

Emeric Deutsch, Oct 25 2007

Keywords

Examples

			a(3)=4 because the areas under the paths hhh, hH, Hh, hUD, UhD and UDh are 0,0,0,1,2 and 1, respectively.
		

Crossrefs

Programs

  • Maple
    g:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/z^2: G:=z^2*(1+z^2)*g^2/((1+z-z^2)*(1-3*z-z^2)): Gser:=series(G,z=0,32): seq(coeff(Gser,z,n),n=0..25);

Formula

a(n) = Sum_{k>=0} k * A134423(n,k).
G.f.: z^2*(1+z^2)*g^2/((1+z-z^2)*(1-3*z-z^2)), where g=1+z*g+z^2*g+z^2*g^2 (g is the g.f. of A128720).
Conjecture D-finite with recurrence -(n+2)*(5*n-7)*a(n) -(n+1)*(5*n-127)*a(n-1) +(135*n^2-655*n-42)*a(n-2) +2*(5*n^2-275*n-108)*a(n-3) +(-725*n^2+4941*n-5734)*a(n-4) +(-235*n^2+1880*n-1173)*a(n-5) +(725*n^2-6659*n+12606)*a(n-6) +2*(5*n^2+195*n-1988)*a(n-7) +(-135*n^2+1505*n-3358)*a(n-8) -(5*n+87)*(n-9)*a(n-9) +(5*n-33)*(n-10)*a(n-10)=0. - R. J. Mathar, Jul 24 2022