A134479 Row sums of triangle A134478.
1, 3, 9, 18, 30, 45, 63, 84, 108, 135, 165, 198, 234, 273, 315, 360, 408, 459, 513, 570, 630, 693, 759, 828, 900, 975, 1053, 1134, 1218, 1305, 1395, 1488, 1584, 1683, 1785, 1890, 1998, 2109, 2223, 2340, 2460, 2583, 2709, 2838, 2970, 3105, 3243, 3384, 3528, 3675, 3825
Offset: 0
Examples
a(3) = 18 = (1, 3, 3, 1) dot (1, 2, 4, -1) = (1 + 6 + 12 -1). a(3) = 18 = sum of row 3 terms of triangle A134478: (3 = 4 + 5 + 6).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Join[{1}, Table[Sum[n + k, {k, 0, n}], {n, 1, 50}]] (* G. C. Greubel, Sep 24 2017 *)
-
PARI
concat([1], for(n=1,50, print1(sum(k=0,n, n+k), ", "))) \\ G. C. Greubel, Sep 24 2017
-
PARI
Vec((1 + 3*x^2 - x^3) / (1 - x)^3 + O(x^60)) \\ Colin Barker, Sep 25 2017
Formula
Binomial transform of [1, 2, 4, -1, 1, -1, 1, ...].
From Colin Barker, Sep 24 2017: (Start)
G.f.: (1 + 3*x^2 - x^3) / (1 - x)^3.
a(n) = 3*n*(1 + n) / 2 for n>0.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. (End)
Extensions
Terms a(14) onward added by G. C. Greubel, Sep 24 2017
Comments