A134530 Matrix log of triangle A111636, where A111636(n,k) = (2^k)^(n-k)*C(n,k) for n>=k>=0.
0, 1, 0, -1, 4, 0, 5, -12, 12, 0, -79, 160, -96, 32, 0, 3377, -6320, 3200, -640, 80, 0, -362431, 648384, -303360, 51200, -3840, 192, 0, 93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0, -56272471039, 95716705280, -41566486528, 6196822016, -362414080, 9175040, -114688, 1024, 0
Offset: 0
Examples
Triangle begins: 0, 1, 0; -1, 4, 0; 5, -12, 12, 0; -79, 160, -96, 32, 0; 3377, -6320, 3200, -640, 80, 0; -362431, 648384, -303360, 51200, -3840, 192, 0; 93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0; ... Matrix exponentiation yields triangle A111636, which begins: 1; 1, 1; 1, 4, 1; 1, 12, 12, 1; 1, 32, 96, 32, 1; 1, 80, 640, 640, 80, 1; ...
Programs
-
PARI
{T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,2^((c-1)*(r-c))*binomial(r-1,c-1))),L); L=sum(i=1,#M,-(M^0-M)^i/i);L[n+1,k+1]}