cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134620 Numbers such that the sum of 4th power of their prime factors is a prime.

Original entry on oeis.org

6, 10, 12, 14, 22, 34, 38, 40, 45, 46, 74, 82, 117, 118, 122, 126, 142, 152, 158, 171, 194, 231, 262, 278, 296, 345, 358, 363, 376, 384, 387, 429, 432, 446, 454, 458, 482, 486, 490, 500, 507, 522, 536, 550, 566, 584, 626, 627, 634, 639, 663, 675, 686, 704, 705
Offset: 1

Views

Author

Hieronymus Fischer, Nov 11 2007

Keywords

Comments

Prime factors must be taken with multiplicity. - Harvey P. Dale, May 23 2012
The calculation of higher terms is time-consuming, since for any number of the form 2*p with a prime number p > 10^5 the primality test have to be accomplished for a number > 10^20. - Hieronymus Fischer, May 21 2013

Examples

			a(2) = 10, since 10 = 2*5 and 2^4+5^4 = 641 which is prime.
a(9) = 45, since 45 = 3*3*5 and 3^4+3^4+5^4 = 787 which is prime.
a(9883) = 333314, since 333314 = 3*166657 and 2^4+166657^4 = 771425941499397811217 which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],PrimeQ[Total[Flatten[Table[First[#],{Last[#]}]&/@ FactorInteger[#]]^4]]&] (* Harvey P. Dale, May 23 2012 *)