cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A134635 Row sums of triangle A134634.

Original entry on oeis.org

1, 2, 6, 18, 54, 164, 508, 1610, 5222, 17308, 58484, 200948, 700348, 2470472, 8804024, 31648858, 114623366, 417820972, 1531629764, 5642508508, 20878731476, 77561756152, 289156105544, 1081466311108, 4056621689564, 15257327887384, 57525469116168, 217383333920040, 823195469508792, 3123379468819600, 11872247508521072, 45203794091311354
Offset: 0

Views

Author

Gary W. Adamson, Nov 04 2007

Keywords

Examples

			a(3) = 18 = sum of row 3 terms of triangle A134634: (5 + 4 + 4 + 5).
		

Crossrefs

Programs

  • Maple
    A134635 := n -> 2*binomial(2*n, n)/(n+1) + add(2^k*binomial(2*n-2*k, n-k)/(2*n-2*k-1), k=0..n): seq(A134635(n), n=0..31); # Mélika Tebni, Feb 11 2024

Formula

Conjecture: (n+1)*a(n) +(-7*n+1)*a(n-1) +2*(7*n-8)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - R. J. Mathar, May 30 2014
a(n) = 2*A000108(n) - A126966(n). - Mélika Tebni, Feb 11 2024

Extensions

Corrected and extended by N. J. A. Sloane, Feb 18 2013

A222403 Triangle read by rows: left and right edges are A000217, interior entries are filled in using the Pascal triangle rule.

Original entry on oeis.org

0, 1, 1, 3, 2, 3, 6, 5, 5, 6, 10, 11, 10, 11, 10, 15, 21, 21, 21, 21, 15, 21, 36, 42, 42, 42, 36, 21, 28, 57, 78, 84, 84, 78, 57, 28, 36, 85, 135, 162, 168, 162, 135, 85, 36, 45, 121, 220, 297, 330, 330, 297, 220, 121, 45, 55, 166, 341, 517, 627, 660, 627, 517, 341, 166, 55
Offset: 0

Views

Author

N. J. A. Sloane, Feb 18 2013

Keywords

Comments

In general, if the sequence defining the left and right edges is [a_0, a_1, ...], the row sums [s_0, s_1, ...] are given by s_0=a_0 and, for n>0,
s_n = 2a_n + Sum_{i=1..n-1} 2^(n-i) a_i.
Conversely, given the rows sums [s_0, s_1, ...], the edge sequence is [a_0, a_1, ...] where a_0=s_0 and, for n>0, a_n = (s_n - Sum_{i=1..n-1} s_i)/2.

Examples

			Triangle begins:
0
1, 1
3, 2, 3
6, 5, 5, 6
10, 11, 10, 11, 10
15, 21, 21, 21, 21, 15
21, 36, 42, 42, 42, 36, 21
28, 57, 78, 84, 84, 78, 57, 28
...
		

Crossrefs

Other triangles of this type: A007318, A051666, A134634, A222404, A222405.
Cf. A000217.
Row sums are A005803.

Programs

  • Maple
    d:=[seq(n*(n+1)/2,n=0..14)];
    f:=proc(d) local T,M,n,i;
    M:=nops(d);
    T:=Array(0..M-1,0..M-1);
    for n from 0 to M-1 do T[n,0]:=d[n+1]; T[n,n]:=d[n+1]; od:
    for n from 2 to M-1 do
    for i from 1 to n-1 do T[n,i]:=T[n-1,i-1]+T[n-1,i]; od: od:
    lprint("triangle:");
    for n from 0 to M-1 do lprint(seq(T[n,i],i=0..n)); od:
    lprint("row sums:");
    lprint([seq( add(T[i,j],j=0..i), i=0..M-1)]);
    end;
    f(d);
  • Mathematica
    t[n_, n_] := n*(n+1)/2; t[n_, 0] := n*(n+1)/2; t[n_, k_] := t[n, k] = t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)

Formula

G.f. as triangle: (1+x-4*x*y+x*y^2+x^2*y^2)*y/((1-y)^2*(-x*y+1)^2*(-x*y-y+1)). - Robert Israel, Apr 04 2018
Showing 1-2 of 2 results.