cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A134648 Number of 2n X n (0,1)-matrices with row sums 2 and column sums 4.

Original entry on oeis.org

0, 1, 90, 44730, 56586600, 154700988750, 807998767676100, 7373018003758407000, 109829050417159537464000, 2532230252503738514963235000, 86574740102712303011539719750000, 4237239732072431006302896746240010000
Offset: 1

Views

Author

Shanzhen Gao, Nov 05 2007

Keywords

Comments

t(m,n) in the formula gives the number of (0,1)-matrices of size m*n with row sum 4 and column sum 2. a(n) in the formula gives the number of (0,1)-matrices of size n*(2n) with row sum 4 and column sum 2. - Shanzhen Gao, Feb 16 2010

Examples

			Number of  4 X 2 (0,1)-matrices:       1;
Number of  6 X 3 (0,1)-matrices:      90;
Number of  8 X 4 (0,1)-matrices:   44730;
Number of 10 X 5 (0,1)-matrices: 5658660.
		

References

  • Gao, Shanzhen, and Matheis, Kenneth, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.

Crossrefs

Programs

  • Magma
    B:=Binomial; F:=Factorial;
    f:= func< m,n,k,j | B(m, k)*B(m-k, j)*B(2*m+2*k-2*j, m+k-j)*F(m+k-j) >;
    t:= func< m,n | ((-1)^m*F(n)/8^m)*(&+[(&+[f(m,n,k,j)*(-1)^(j+k)/(12)^k: k in [0..m-j]]): j in [0..m]]) >;
    A134648:= func< n | F(2*n)*t(n,n)/F(n) >;
    [A134648(n): n in [1..30]]; // G. C. Greubel, Oct 13 2023
    
  • Mathematica
    t[m_, n_]:= t[m, n]= ((-1)^m*n!/8^m)*Sum[Binomial[m,k]*Binomial[m-k,j]*Binomial[2*m+2*k-2*j,m+k-j]*(m+k-j)!*(-1)^(j+k)/(12)^k, {j,0, m}, {k,0,m-j}];
    A134648[n_]:= (2*n)!*t[n,n]/n!;
    Table[A134648[n], {n,30}] (* G. C. Greubel, Oct 13 2023 *)
  • SageMath
    b=binomial; F=factorial;
    def f(m,n,k,j): return b(m, k)*b(m-k, j)*b(2*m+2*k-2*j, m+k-j)*F(m+k-j)
    def t(m,n): return ((-1)^m*F(n)/8^m)*sum(sum(f(m,n,k,j)*(-1)^(j+k)/(12)^k for k in range(m-j+1)) for j in range(m+1))
    def A134648(n): return F(2*n)*t(n,n)/F(n)
    [A134648(n) for n in range(1,31)] # G. C. Greubel, Oct 13 2023

Formula

a(n) = (2*n)!*t(n,n)/n!, where t(m, n) = (1/24^m)*Sum_{j=0..m} Sum_{k=0..m-j} ( (-1)^(m-j-k)*3^j*6^(m-j-k)*m!*n!*(4*k+2*(m-j-k))! )/( j!*k!*(m-j-k)!*(2*k+(m-j-k))!*2^(2*k+(m-j-k)) ).
a(n) = (1/24^n)*Sum_{j=0..n} Sum_{k=0..n-j} ((-1)^(n-j-k)*3^j*6^(n-j-k)*n!(2n)!(2n-2j+2k)!/(j!k!(n-j-k)!(n-j+k)!*2^(n-j+k))). - Shanzhen Gao, Feb 16 2010
a(n) ~ sqrt(Pi) * 2^(3*n + 3/2) * n^(4*n + 1/2) / (3^n * exp(4*n + 3/2)). - Vaclav Kotesovec, Oct 21 2023

Extensions

a(7) onwards from R. H. Hardin, Oct 18 2009

A134645 Number of 2n X 3n (0,1,2)-matrices with every row sum 3 and column sum 2.

Original entry on oeis.org

7, 16260, 747558000, 250071339672000, 369820640830881240000, 1796185853884657144990080000, 23511842995969107700302647865600000, 720289186703359375552628986978410240000000, 46455761324619133018320834819622638940550400000000, 5809177204262302555518772962193269714031251010176000000000
Offset: 1

Views

Author

Shanzhen Gao, Nov 05 2007

Keywords

Examples

			a(1) = 7:
111 210 (6 ways)
111 012
		

References

  • Zhonghua Tan, Shanzhen Gao, Kenneth Mathies, Joshua Fallon, Counting (0,1,2)-Matrices, Congressus Numeratium, December 2008.

Crossrefs

Programs

  • Maple
    f:=proc(m,n) 6^(-m)*add( (3^i*m!*n!*(2*n-2*i)!)/ (i!*(m-i)!*(n-i)!*2^(n-i)), i=0..m); end;
  • Mathematica
    Table[(3*n)! * (2*n)! / 288^n * Sum[(6*n - 2*i)! * 6^i / (i! * (3*n - i)! * (2*n - i)!), {i, 0, 2*n}], {n, 1, 15}] (* Vaclav Kotesovec, Oct 21 2023 *)
    Table[(2/9)^n * (3*n)! * ((6*n - 1)/2)! * Hypergeometric1F1[-2*n, 1/2 - 3*n, 3/2] / Sqrt[Pi], {n, 1, 15}] (* Vaclav Kotesovec, Oct 21 2023 *)

Formula

Let t(m,n)=6^{-m} sum_{i=0}^{m}frac{3^{i}m!n!(2n-2i)!}{i!(m-i)!(n-i)!2^{n-i}}; then a(n) = t(2n,3n).
a(n) = (3n)!(2n)!288^(-n) * Sum_{i=0..2n} (6n-2i)!6^i/(i!(3n-i)!(2n-i)!). - Shanzhen Gao, Mar 02 2010
a(n) ~ sqrt(Pi) * 2^(n+1) * 3^(4*n + 1/2) * n^(6*n + 1/2) / exp(6*n-1). - Vaclav Kotesovec, Oct 21 2023

Extensions

Corrected, edited and extended with Maple program by R. H. Hardin and N. J. A. Sloane, Oct 18 2009
Showing 1-2 of 2 results.