A134657 Numbers of the form p^2 + q^3 + r^4 with p, q and r primes.
28, 33, 47, 49, 52, 68, 73, 92, 93, 98, 112, 114, 117, 133, 138, 145, 150, 157, 164, 166, 190, 193, 210, 212, 215, 229, 231, 255, 258, 262, 277, 310, 313, 327, 332, 363, 368, 375, 378, 384, 385, 397, 404, 408, 428, 430, 433, 449, 450, 469, 473, 480, 495
Offset: 1
Examples
a(1) = 28 = 2^2 + 2^3 + 2^4 is the smallest sum of a prime squared, a prime cubed and the 4th power of a prime. a(2) = 33 = 3^2 + 2^3 + 2^4 is the next number of that form.
Links
- Project Euler, Problem 87: Prime power triples.
Crossrefs
Cf. A045701.
Programs
-
Mathematica
Take[Union[Total[#^{2,3,4}]&/@Tuples[Prime[Range[10]],3]],60] (* Harvey P. Dale, Mar 02 2013 *)
-
PARI
is_p87(n,t,tt)=forprime(p=2,sqrtn(n,4),t=n-p^4; forprime(q=2,sqrtn(t,3), issquare(t-q^3,&tt) || next; isprime(tt) && return(1))) print_p87(Nmax=999)=for(n=1,Nmax,is_p87(n) && print1(n","))
Comments